

jQuery Cookbook

jQuery Cookbook

jQuery Community Experts

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

jQuery Cookbook
by jQuery Community Experts

Copyright © 2010 Cody Lindley. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Simon St.Laurent
Production Editor: Sarah Schneider
Copyeditor: Kim Wimpsett
Proofreader: Andrea Fox
Production Services: Molly Sharp

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
November 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. jQuery Cookbook, the
image of an ermine, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover, a durable and flexible lay-flat binding.

ISBN: 978-0-596-15977-1

[S]

1257774409

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Foreword . xi

Contributors . xiii

Preface . xvii

1. jQuery Basics . 1
1.1 Including the jQuery Library Code in an HTML Page 9
1.2 Executing jQuery/JavaScript Coded After the DOM Has Loaded

but Before Complete Page Load 10
1.3 Selecting DOM Elements Using Selectors and the jQuery Function 13
1.4 Selecting DOM Elements Within a Specified Context 15
1.5 Filtering a Wrapper Set of DOM Elements 16
1.6 Finding Descendant Elements Within the Currently Selected

Wrapper Set 18
1.7 Returning to the Prior Selection Before a Destructive Change 19
1.8 Including the Previous Selection with the Current Selection 20
1.9 Traversing the DOM Based on Your Current Context to Acquire a

New Set of DOM Elements 21
1.10 Creating, Operating on, and Inserting DOM Elements 23
1.11 Removing DOM Elements 24
1.12 Replacing DOM Elements 26
1.13 Cloning DOM Elements 27
1.14 Getting, Setting, and Removing DOM Element Attributes 29
1.15 Getting and Setting HTML Content 30
1.16 Getting and Setting Text Content 31
1.17 Using the $ Alias Without Creating Global Conflicts 32

2. Selecting Elements with jQuery . 35
2.1 Selecting Child Elements Only 36
2.2 Selecting Specific Siblings 37

v

2.3 Selecting Elements by Index Order 39
2.4 Selecting Elements That Are Currently Animating 41
2.5 Selecting Elements Based on What They Contain 42
2.6 Selecting Elements by What They Don’t Match 43
2.7 Selecting Elements Based on Their Visibility 43
2.8 Selecting Elements Based on Attributes 44
2.9 Selecting Form Elements by Type 46

2.10 Selecting an Element with Specific Characteristics 47
2.11 Using the Context Parameter 48
2.12 Creating a Custom Filter Selector 50

3. Beyond the Basics . 53
3.1 Looping Through a Set of Selected Results 53
3.2 Reducing the Selection Set to a Specified Item 56
3.3 Convert a Selected jQuery Object into a Raw DOM Object 59
3.4 Getting the Index of an Item in a Selection 62
3.5 Making a Unique Array of Values from an Existing Array 64
3.6 Performing an Action on a Subset of the Selected Set 67
3.7 Configuring jQuery Not to Conflict with Other Libraries 69
3.8 Adding Functionality with Plugins 72
3.9 Determining the Exact Query That Was Used 74

4. jQuery Utilities . 77
4.1 Detecting Features with jQuery.support 77
4.2 Iterating Over Arrays and Objects with jQuery.each 79
4.3 Filtering Arrays with jQuery.grep 80
4.4 Iterating and Modifying Array Entries with jQuery.map 81
4.5 Combining Two Arrays with jQuery.merge 81
4.6 Filtering Out Duplicate Array Entries with jQuery.unique 82
4.7 Testing Callback Functions with jQuery.isFunction 82
4.8 Removing Whitespace from Strings or Form Values with

jQuery.trim 83
4.9 Attaching Objects and Data to DOM with jQuery.data 84

4.10 Extending Objects with jQuery.extend 85

5. Faster, Simpler, More Fun . 87
5.1 That’s Not jQuery, It’s JavaScript! 87
5.2 What’s Wrong with $(this)? 88
5.3 Removing Redundant Repetition 91
5.4 Formatting Your jQuery Chains 92
5.5 Borrowing Code from Other Libraries 94
5.6 Writing a Custom Iterator 96
5.7 Toggling an Attribute 99

vi | Table of Contents

5.8 Finding the Bottlenecks 101
5.9 Caching Your jQuery Objects 105

5.10 Writing Faster Selectors 107
5.11 Loading Tables Faster 109
5.12 Coding Bare-Metal Loops 112
5.13 Reducing Name Lookups 115
5.14 Updating the DOM Faster with .innerHTML 117
5.15 Debugging? Break Those Chains 118
5.16 Is It a jQuery Bug? 120
5.17 Tracing into jQuery 121
5.18 Making Fewer Server Requests 123
5.19 Writing Unobtrusive JavaScript 126
5.20 Using jQuery for Progressive Enhancement 128
5.21 Making Your Pages Accessible 130

6. Dimensions . 135
6.1 Finding the Dimensions of the Window and Document 135
6.2 Finding the Dimensions of an Element 137
6.3 Finding the Offset of an Element 139
6.4 Scrolling an Element into View 141
6.5 Determining Whether an Element Is Within the Viewport 143
6.6 Centering an Element Within the Viewport 146
6.7 Absolutely Positioning an Element at Its Current Position 147
6.8 Positioning an Element Relative to Another Element 147
6.9 Switching Stylesheets Based on Browser Width 148

7. Effects . 151
7.1 Sliding and Fading Elements in and out of View 153
7.2 Making Elements Visible by Sliding Them Up 156
7.3 Creating a Horizontal Accordion 157
7.4 Simultaneously Sliding and Fading Elements 161
7.5 Applying Sequential Effects 162
7.6 Determining Whether Elements Are Currently Being Animated 164
7.7 Stopping and Resetting Animations 165
7.8 Using Custom Easing Methods for Effects 166
7.9 Disabling All Effects 168

7.10 Using jQuery UI for Advanced Effects 168

8. Events . 171
8.1 Attaching a Handler to Many Events 172
8.2 Reusing a Handler Function with Different Data 173
8.3 Removing a Whole Set of Event Handlers 175
8.4 Triggering Specific Event Handlers 176

Table of Contents | vii

8.5 Passing Dynamic Data to Event Handlers 177
8.6 Accessing an Element ASAP (Before document.ready) 179
8.7 Stopping the Handler Execution Loop 182
8.8 Getting the Correct Element When Using event.target 184
8.9 Avoid Multiple hover() Animations in Parallel 185

8.10 Making Event Handlers Work for Newly Added Elements 187

9. Advanced Events . 191
9.1 Getting jQuery to Work When Loaded Dynamically 191
9.2 Speeding Up Global Event Triggering 192
9.3 Creating Your Own Events 195
9.4 Letting Event Handlers Provide Needed Data 198
9.5 Creating Event-Driven Plugins 201
9.6 Getting Notified When jQuery Methods Are Called 205
9.7 Using Objects’ Methods as Event Listeners 208

10. HTML Form Enhancements from Scratch . 211
10.1 Focusing a Text Input on Page Load 212
10.2 Disabling and Enabling Form Elements 213
10.3 Selecting Radio Buttons Automatically 216
10.4 (De)selecting All Checkboxes Using Dedicated Links 218
10.5 (De)selecting All Checkboxes Using a Single Toggle 219
10.6 Adding and Removing Select Options 221
10.7 Autotabbing Based on Character Count 222
10.8 Displaying Remaining Character Count 224
10.9 Constraining Text Input to Specific Characters 226

10.10 Submitting a Form Using Ajax 228
10.11 Validating Forms 229

11. HTML Form Enhancements with Plugins . 237
11.1 Validating Forms 238
11.2 Creating Masked Input Fields 247
11.3 Autocompleting Text Fields 249
11.4 Selecting a Range of Values 250
11.5 Entering a Range-Constrained Value 253
11.6 Uploading Files in the Background 255
11.7 Limiting the Length of Text Inputs 256
11.8 Displaying Labels Above Input Fields 257
11.9 Growing an Input with Its Content 259

11.10 Choosing a Date 260

12. jQuery Plugins . 263
12.1 Where Do You Find jQuery Plugins? 263

viii | Table of Contents

12.2 When Should You Write a jQuery Plugin? 265
12.3 Writing Your First jQuery Plugin 267
12.4 Passing Options into Your Plugin 268
12.5 Using the $ Shortcut in Your Plugin 270
12.6 Including Private Functions in Your Plugin 272
12.7 Supporting the Metadata Plugin 273
12.8 Adding a Static Function to Your Plugin 275
12.9 Unit Testing Your Plugin with QUnit 277

13. Interface Components from Scratch . 279
13.1 Creating Custom Tool Tips 280
13.2 Navigating with a File-Tree Expander 285
13.3 Expanding an Accordion 288
13.4 Tabbing Through a Document 293
13.5 Displaying a Simple Modal Window 296
13.6 Building Drop-Down Menus 303
13.7 Cross-Fading Rotating Images 305
13.8 Sliding Panels 310

14. User Interfaces with jQuery UI . 315
14.1 Including the Entire jQuery UI Suite 317
14.2 Including an Individual jQuery UI Plugin or Two 318
14.3 Initializing a jQuery UI Plugin with Default Options 319
14.4 Initializing a jQuery UI Plugin with Custom Options 320
14.5 Creating Your Very Own jQuery UI Plugin Defaults 321
14.6 Getting and Setting jQuery UI Plugin Options 323
14.7 Calling jQuery UI Plugin Methods 323
14.8 Handling jQuery UI Plugin Events 324
14.9 Destroying a jQuery UI Plugin 326

14.10 Creating a jQuery UI Music Player 327

15. jQuery UI Theming . 341
15.1 Styling jQuery UI Widgets with ThemeRoller 345
15.2 Overriding jQuery UI Layout and Theme Styles 360
15.3 Applying a Theme to Non-jQuery UI Components 370
15.4 Referencing Multiple Themes on a Single Page 379
15.5 Appendix: Additional CSS Resources 388

16. jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP . 391
16.1 jQuery and Ajax 391
16.2 Using Ajax on Your Whole Site 394
16.3 Using Simple Ajax with User Feedback 396
16.4 Using Ajax Shortcuts and Data Types 400

Table of Contents | ix

16.5 Using HTML Fragments and jQuery 403
16.6 Converting XML to DOM 404
16.7 Creating JSON 405
16.8 Parsing JSON 406
16.9 Using jQuery and JSONP 407

17. Using jQuery in Large Projects . 411
17.1 Using Client-Side Storage 411
17.2 Saving Application State for a Single Session 414
17.3 Saving Application State Between Sessions 416
17.4 Using a JavaScript Template Engine 417
17.5 Queuing Ajax Requests 420
17.6 Dealing with Ajax and the Back Button 422
17.7 Putting JavaScript at the End of a Page 423

18. Unit Testing . 425
18.1 Automating Unit Testing 425
18.2 Asserting Results 427
18.3 Testing Synchronous Callbacks 429
18.4 Testing Asynchronous Callbacks 429
18.5 Testing User Actions 431
18.6 Keeping Tests Atomic 432
18.7 Grouping Tests 433
18.8 Selecting Tests to Run 434

Index . 437

x | Table of Contents

Foreword

When I first started work on building jQuery, back in 2005, I had a simple goal in mind:
I wanted to be able to write a web application and have it work in all the major
browsers—without further tinkering and bug fixing. It was a couple of months before
I had a set of utilities that were stable enough to achieve that goal for my personal use.
I thought I was relatively done at this point; little did I know that my work was just
beginning.

Since those simple beginnings, jQuery has grown and adapted as new users use the
library for their projects. This has proven to be the most challenging part of developing
a JavaScript library; while it is quite easy to build a library that’ll work for yourself or
a specific application, it becomes incredibly challenging to develop a library that’ll work
in as many environments as possible (old browsers, legacy web pages, and strange
markup abound). Surprisingly, even as jQuery has adapted to handle more use cases,
most of the original API has stayed intact.

One thing I find particularly interesting is to see how developers use jQuery and make
it their own. As someone with a background in computer science, I find it quite sur-
prising that so many designers and nonprogrammers find jQuery to be compelling.
Seeing how they interact with the library has given me a better appreciation of simple
API design. Additionally, seeing many advanced programmers take jQuery and develop
large, complex applications with it has been quite illuminating. The best part of all of
this, though, is the ability to learn from everyone who uses the library.

A side benefit of using jQuery is its extensible plugin structure. When I first developed
jQuery, I was sure to include some simple ways for developers to extend the API that
it provided. This has blossomed into a large and varied community of plugins, encom-
passing a whole ecosystem of applications, developers, and use cases. Much of jQuery’s
growth has been fueled by this community—without it, the library wouldn’t be where
it is today, so I’m glad that there are chapters dedicated to some of the most interesting
plugins and what you can do with them. One of the best ways to expand your precon-
ceived notion of what you can do with jQuery is to learn and use code from the jQuery
plugin community.

xi

This is largely what makes something like a cookbook so interesting: it takes the cool
things that developers have done, and have learned, in their day-to-day coding and
distills it to bite-sized chunks for later consumption. Personally, I find a cookbook to
be one of the best ways to challenge my preconceived notions of a language or library.
I love seeing cases where an API that I thought I knew well is turned around and used
in new and interesting ways. I hope this book is able to serve you well, teaching you
new and interesting ways to use jQuery.

—John Resig
Creator, Lead Developer, jQuery

xii | Foreword

Contributors

Chapter Authors
Jonathan Sharp has been passionate about the Internet and web development since
1996. Over the years that have followed, he has worked for startups and for Fortune
500 corporations. Jonathan founded Out West Media, LLC, in greater Omaha, Ne-
braska, and provides frontend engineering and architecture services with a focus on
custom XHTML, CSS, and jQuery development. Jonathan is a jQuery core team mem-
ber and an author and presenter when not coding. Jonathan is most grateful for his
wife, Erin; daughter, Noel; two dogs, and two horses.

Rob Burns develops interactive web applications at A Mountain Top, LLC. For the
past 12 years he has been exploring website development using a wide range of tools
and technologies. In his spare time, he enjoys natural-language processing and the
wealth of opportunity in open source software projects.

Rebecca Murphey is an independent frontend architecture consultant, crafting cus-
tom frontend solutions that serve as the glue between server and browser. She also
provides training in frontend development, with an emphasis on the jQuery library.
She lives with her partner, two dogs, and two cats in Durham, North Carolina.

Ariel Flesler is a web developer and a video game programmer. He’s been contributing
to jQuery since January 2007 and joined the core team in May 2008. He is 23 years old
and was born in Buenos Aires, Argentina. He’s studying at the National Technological
University (Argentina) and is hoping to become a systems analyst by 2010 and a systems
engineer by 2012. He started working as an ASP.NET(C#) programmer and then
switched to client-side development of XHTML sites and Ajax applications. He’s cur-
rently working at QB9 where he develops AS3-based casual games and MMOs.

Cody Lindley is a Christian, husband, son, father, brother, outdoor enthusiast, and
professional client-side engineer. Since 1997 he has been passionate about HTML, CSS,
JavaScript, Flash, interaction design, interface design, and HCI. He is most well known
in the jQuery community for the creation of ThickBox, a modal/dialog solution. In
2008 he officially joined the jQuery team as an evangelist. His current focus has been

xiii

on client-side optimization techniques as well as speaking and writing about jQuery.
His website is http://www.codylindley.com.

Remy Sharp is a developer, author, speaker, and blogger. Remy started his professional
web development career in 1999 as the sole developer for a finance website and, as
such, was exposed to all aspects of running the website during, and long after, the
dotcom boom. Today he runs his own development company called Left Logic in
Brighton, UK, writing and coding JavaScript, jQuery, HTML 5, CSS, PHP, Perl, and
anything else he can get his hands on.

Mike Hostetler is an inventor, entrepreneur, programmer, and proud father. Having
worked with web technologies since the mid-1990s, Mike has had extensive experience
developing web applications with PHP and JavaScript. Currently, Mike works at the
helm of A Mountain Top, LLC, a web technology consulting firm in Denver, Colorado.
Heavily involved in open source, Mike is a member of the jQuery core team, leads the
QCubed PHP5 Framework project, and participates in the Drupal project. When not
in front of a computer, Mike enjoys hiking, fly fishing, snowboarding, and spending
time with his family.

Ralph Whitbeck is a graduate of the Rochester Institute of Technology and is currently
a senior developer for BrandLogic Corporation in Rochester, New York. His respon-
sibilities at BrandLogic include interface design, usability testing, and web and appli-
cation development. Ralph is able to program complex web application systems in
ASP.NET, C#, and SQL Server and also uses client-side technologies such as XHTML,
CSS, and JavaScript/jQuery in order to implement client-approved designs. Ralph of-
ficially joined the jQuery team as an evangelist in October 2009. Ralph enjoys spending
time with his wife, Hope, and his three boys, Brandon, Jordan, and Ralphie. You can
find out more about Ralph on his personal blog.

Nathan Smith is a goofy guy who has been building websites since late last century.
He enjoys hand-coding HTML, CSS, and JavaScript. He also dabbles in design and
information architecture. He has written for online and paper publications such as
Adobe Developer Center, Digital Web, and .NET Magazine. He has spoken at venues
including Adobe MAX, BibleTech, Drupal Camp, Echo Conference, Ministry 2.0, Re-
fresh Dallas, and Webmaster Jam Session. Nathan works as a UX developer at Fellow-
shipTech.com. He holds a Master of Divinity degree from Asbury Theological Semi-
nary. He started Godbit.com, a community resource aimed at helping churches and
ministries make better use of the Web. He also created the 960 Grid System, a frame-
work for sketching, designing, and coding page layouts.

Brian Cherne is a software developer with more than a decade of experience blue-
printing and building web-based applications, kiosks, and high-traffic e-commerce
websites. He is also the author of the hoverIntent jQuery plugin. When not geeking
out with code, Brian can be found ballroom dancing, practicing martial arts, or studying
Russian culture and language.

xiv | Contributors

http://www.codylindley.com
http://brandlogic.com
http://ralphwhitbeck.com
http://www.960.gs

Jörn Zaefferer is a professional software developer from Cologne, Germany. He cre-
ates application programming interfaces (APIs), graphical user interfaces (GUIs), soft-
ware architectures, and databases, for both web and desktop applications. His work
focuses on the Java platform, while his client-side scripting revolves around jQuery.
He started contributing to jQuery in mid-2006 and has since cocreated and maintained
QUnit, jQuery’s unit testing framework; released and maintained a half dozen very
popular jQuery plugins; and contributed to jQuery books as both author and tech
reviewer. He is also a lead developer for jQuery UI.

James Padolsey is an enthusiastic web developer and blogger based in London, UK.
He’s been crazy about jQuery since he first discovered it; he’s written tutorials teaching
it, articles and blog posts discussing it, and plenty of plugins for the community. James’
plans for the future include a computer science degree from the University of Kent and
a career that allows him to continually push boundaries. His website is http://james
.padolsey.com.

Scott González is a web application developer living in Raleigh, North Carolina, who
enjoys building highly dynamic systems and flexible, scalable frameworks. He has been
contributing to jQuery since 2007 and is currently the development lead for jQuery UI,
jQuery’s official user interface library. Scott also writes tutorials about jQuery and
jQuery UI on nemikor.com and speaks about jQuery at conferences.

Michael Geary started developing software when editing code meant punching a paper
tape on a Teletype machine, and “standards-compliant” meant following ECMA-10
Standard for Data Interchange on Punched Tape. Today Mike is a web and Android
developer with a particular interest in writing fast, clean, and simple code, and he enjoys
helping other developers on the jQuery mailing lists. Mike’s recent projects include a
series of 2008 election result and voter information maps for Google; and StrataLogic,
a mashup of traditional classroom wall maps and atlases overlaid on Google Earth. His
website is http://mg.to.

Maggie Wachs, Scott Jehl, Todd Parker, and Patty Toland are Filament Group.
Together, they design and develop highly functional user interfaces for consumer- and
business-oriented websites, wireless devices, and installed and web-based applications,
with a specific focus on delivering intuitive and usable experiences that are also broadly
accessible. They are sponsor and design leads of the jQuery UI team, for whom they
designed and developed ThemeRoller.com, and they actively contribute to ongoing
development of the official jQuery UI library and CSS Framework.

Richard D. Worth is a web UI developer. He is the release manager for jQuery UI and
one of its longest-contributing developers. He is author or coauthor of the Dialog,
Progressbar, Selectable, and Slider plugins. Richard also enjoys speaking and consulting
on jQuery and jQuery UI around the world. Richard is raising a growing family in
Northern Virginia (Washington, D.C. suburbs) with his lovely wife, Nancy. They have
been blessed to date with three beautiful children: Naomi, Asher, and Isaiah.
Richard’s website is http://rdworth.org/.

Contributors | xv

http://james.padolsey.com
http://james.padolsey.com
http://mg.to
http://themeroller.com
http://rdworth.org/

Tech Editors
Karl Swedberg, after having taught high school English, edited copy for an advertising
agency, and owned a coffee house, began his career as a web developer four years ago.
He now works for Fusionary Media in Grand Rapids, Michigan, where he specializes
in client-side scripting and interaction design. Karl is a member of the jQuery project
team and coauthor of Learning jQuery 1.3 and jQuery Reference Guide (both published
by Packt). You can find some of his tips and tutorials at http://www.learningjquery.com.

Dave Methvin is the chief technology officer at PCPitstop.com and one of the founding
partners of the company. He has been using jQuery since 2006, is active on the jQuery
help groups, and has contributed several popular jQuery plugins including Corner and
Splitter. Before joining PC Pitstop, Dave served as executive editor at both PC Tech
Journal and Windows Magazine, where he wrote a column on JavaScript. He continues
to write for several PC-related websites including InformationWeek. Dave holds bach-
elor’s and master’s degrees in computer science from the University of Virginia.

David Serduke is a frontend programmer who is recently spending much of his time
server side. After programming for many years, he started using jQuery in late 2007
and shortly after joined the jQuery core team. David is currently creating websites for
financial institutions and bringing the benefits of jQuery to ASP.NET enterprise ap-
plications. David lives in northern California where he received a bachelor’s degree
from the University of California at Berkeley in electrical engineering and an MBA from
St. Mary’s College.

Scott Mark is an enterprise application architect at Medtronic. He works on web-based
personalized information portals and transactional applications with an eye toward
maintaining high usability in a regulated environment. His key interest areas at the
moment are rich Internet applications and multitouch user interface technologies. Scott
lives in Minnesota with his lovely wife, two sons, and a black lab. He blogs about
technology at http://scottmark.wordpress.com and long-distance trail running at http://
runlikemonkey.com.

xvi | Contributors

http://www.learningjquery.com
http://www.pcpitstop.com
http://scottmark.wordpress.com
http://runlikemonkey.com
http://runlikemonkey.com

Preface

The jQuery library has taken the frontend development world by storm. Its dead-simple
syntax makes once-complicated tasks downright trivial—enjoyable, even. Many a de-
veloper has been quickly seduced by its elegance and clarity. If you’ve started using the
library, you’re already adding rich, interactive experiences to your projects.

Getting started is easy, but as is the case with many of the tools we use to develop
websites, it can take months or even years to fully appreciate the breadth and depth of
the jQuery library. The library is chock-full of features you might never have known to
wish for. Once you know about them, they can dramatically change how you approach
the problems you’re called upon to solve.

The goal of this cookbook is to expose you, dear reader, to the patterns and practices
of some of the leading frontend developers who use jQuery in their everyday projects.
Over the course of 18 chapters, they’ll guide you through solutions to problems that
range from straightforward to complex. Whether you’re a jQuery newcomer or a griz-
zled JavaScript veteran, you’re likely to gain new insight into harnessing the full power
of jQuery to create compelling, robust, high-performance user interfaces.

Who This Book Is For
Maybe you’re a designer who is intrigued by the interactivity that jQuery can provide.
Maybe you’re a frontend developer who has worked with jQuery before and wants to
see how other people accomplish common tasks. Maybe you’re a server-side developer
who’s frequently called upon to write client-side code.

Truth be told, this cookbook will be valuable to anyone who works with jQuery—or
who hopes to work with jQuery. If you’re just starting out with the library, you may
want to consider pairing this book with Learning jQuery 1.3 from Packt, or jQuery in
Action from Manning. If you’re already using jQuery in your projects, this book will
serve to enhance your knowledge of the library’s features, hidden gems, and
idiosyncrasies.

xvii

What You’ll Learn
We’ll start out by covering the basics and general best practices—including jQuery in
your page, making selections, and traversing and manipulation. Even frequent jQuery
users are likely to pick up a tip or two. From there, we move on to real-world use cases,
walking you through tried-and-true (and tested) solutions to frequent problems
involving events, effects, dimensions, forms, and user interface elements (with and
without the help of jQuery UI). At the end, we’ll take a look at testing your jQuery
applications and integrating jQuery into complex sites.

Along the way, you’ll learn strategies for leveraging jQuery to solve problems that go
far beyond the basics. We’ll explore how to make the most of jQuery’s event manage-
ment system, including custom events and custom event data; how to progressively
enhance forms; how to position and reposition elements on the page; how to create
user interface elements such as tabs, accordions, and modals from scratch; how to craft
your code for readability and maintainability; how to optimize your code to ease testing,
eliminate bottlenecks, and ensure peak performance; and more.

Because this is a cookbook and not a manual, you’re of course welcome to cherry-pick
the recipes you read; the individual recipes alone are worth the price of admission. As
a whole, though, the book provides a rare glimpse into the problem-solving approaches
of some of the best and brightest in the jQuery community. With that in mind, we
encourage you to at least skim it from front to back—you never know which line of
code will provide the “Aha!” moment you need to take your skills to the next level.

jQuery Style and Conventions
jQuery places a heavy emphasis on chaining—calling methods on element selections
in sequence, confident in the knowledge that each method will give you back a selection
of elements you can continue to work with. This pattern is explained in depth in
Chapter 1—if you’re new to the library, you’ll want to understand this concept, because
it is used heavily in subsequent chapters.

jQuery’s features are organized into a handful of simple categories: core functionality,
selecting, manipulating, traversing, CSS, attributes, events, effects, Ajax, and utilities.
Learning these categories, and how methods fit into them, will greatly enhance your
understanding of the material in this book.

One of the best practices this book will cover is the concept of storing element selections
in a variable, rather than making the same selection repeatedly. When a selection is
stored in a variable, it is commonplace for that variable to begin with the $ character,
indicating that it is a jQuery object. This can make code easier to read and maintain,
but it should be understood that starting the variable name with the $ character is merely
a convention; it carries no special meaning, unlike in other languages such as PHP.

xviii | Preface

In general, the code examples in this book strive for clarity and readability over com-
pactness, so the examples may be more verbose than is strictly necessary. If you see an
opportunity for optimization, you should not hesitate to take it. At the same time, you’ll
do well to strive for clarity and readability in your own code and use minification tools
to prepare your code for production use.

Other Options
If you’re looking for other jQuery resources, here are some we recommend:

• Learning jQuery 1.3, by Jonathan Chaffer, Karl Swedberg, and John Resig (Packt)

• jQuery in Action, by Bear Bibeault, Yehuda Katz, and John Resig (Manning)

• jQuery UI 1.6: The User Interface Library for jQuery, by Dan Wellman (Packt)

If You Have Problems Making Examples Work
Before you check anything else, ensure that you are loading the jQuery library on the
page—you’d be surprised how many times this is the solution to the “It’s not working!”
problem. If you are using jQuery with another JavaScript library, you may need to use
jQuery.noConflict() to make it play well with others. If you’re loading scripts that
require the presence of jQuery, make sure you are loading them after you’ve loaded the
jQuery library.

Much of the code in this book requires the document to be “ready” before JavaScript
can interact with it. If you’ve included code in the head of the document, make sure
your code is enclosed in $(document).ready(function() { ... }); so that it knows to
wait until the document is ready for interaction.

Some of the features discussed in this book are available only in jQuery 1.3 and later.
If you are upgrading from an older version of jQuery, make sure you’ve upgraded any
plugins you’re using as well—outdated plugins can lead to unpredictable behavior.

If you’re having difficulty getting an example to work in an existing application, make
sure you can get the example working on its own before trying to integrate it with your
existing code. If that works, tools such as Firebug for the Firefox browser can be useful
in identifying the source of the problem.

If you’re including a minified version of jQuery and running into errors that point to
the jQuery library itself, you may want to consider switching to the full version of
jQuery while you are debugging the issue. You’ll have a much easier time locating the
line that is causing you trouble, which will often lead you in the direction of a solution.

If you’re still stuck, consider posting your question to the jQuery Google group. Many
of this book’s authors are regular participants in the group, and more often than not,
someone in the group will be able to offer useful advice. The #jquery IRC channel on
Freenode is another valuable resource for troubleshooting issues.

Preface | xix

If none of this works, it’s possible we made a mistake. We worked hard to test and
review all of the code in the book, but errors do creep through. Check the errata (de-
scribed in the next section) and download the sample code, which will be updated to
address any errata we discover.

If You Like (or Don’t Like) This Book
If you like—or don’t like—this book, by all means, please let people know. Amazon
reviews are one popular way to share your happiness (or lack of happiness), or you can
leave reviews at the site for the book:

http://oreilly.com/catalog/9780596159771/

There’s also a link to errata there. Errata gives readers a way to let us know about typos,
errors, and other problems with the book. That errata will be visible on the page im-
mediately, and we’ll confirm it after checking it out. O’Reilly can also fix errata in future
printings of the book and on Safari, making for a better reader experience pretty quickly.
We hope to keep this book updated for future versions of jQuery, and will also incor-
porate suggestions and complaints into future editions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates Internet addresses, such as domain names and URLs, and new items
where they are defined.

Constant width
Indicates command lines and options that should be typed verbatim; names and
keywords in programs, including method names, variable names, and class names;
and HTML element tags, switches, attributes, keys, functions, types, namespaces,
modules, properties, parameters, values, objects, events, event handlers, macros,
the contents of files, or the output from commands.

Constant width bold
Indicates emphasis in program code lines.

Constant width italic
Indicates text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

xx | Preface

http://oreilly.com/catalog/9780596159771/

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Answering a question by citing this book and quoting example code does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “jQuery Cookbook, by Cody Lindley. Copy-
right 2010 Cody Lindley, 978-0-596-15977-1.” If you feel your use of code examples
falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

Preface | xxi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://oreilly.com

—Rebecca Murphey and Cody Lindley

xxii | Preface

mailto:bookquestions@oreilly.com
http://oreilly.com

CHAPTER 1

jQuery Basics

Cody Lindley

1.0 Introduction
Since you’ve picked up a cookbook about jQuery, the authors of this book for the most
part are going to assume that you have a loose idea about what exactly jQuery is and
what it does. Frankly, cookbooks in general are typically written for an audience who
seeks to enhance a foundation of knowledge that has already been established. Thus,
the recipe-solution-discussion format is used to quickly get you solutions to common
problems. However, if you are a jQuery newbie, don’t throw this book against the wall
and curse us just yet. We’ve dedicated this chapter to you.

If you are in need of a review or are jumping into this cookbook with little or no working
knowledge of jQuery, this first chapter alone (the other chapters assume you know the
basics) will aid you in learning the jQuery essentials. Now, realistically, if you have
absolutely zero knowledge of JavaScript and the DOM, you might want to take a step
back and ask yourself whether approaching jQuery without a basic understanding of
the JavaScript core language and its relationship with the DOM is plausible. It would
be my recommendation to study up on the DOM and JavaScript core before approach-
ing jQuery. I highly recommend JavaScript: The Definitive Guide by David Flanagan
(O’Reilly) as a primer before reading this book. But don’t let my humble opinion stop
you if you are attempting to learn jQuery before you learn about the DOM and Java-
Script. Many have come to a working knowledge of these technologies by way of
jQuery. And while not ideal, let’s face it, it can still be done.

With that said, let’s take a look at a formal definition of jQuery and a brief description
of its functionality:

jQuery is an open source JavaScript library that simplifies the interactions between an
HTML document, or more precisely the Document Object Model (aka the DOM), and
JavaScript.

In plain words, and for the old-school JavaScript hackers out there, jQuery makes Dy-
namic HTML (DHTML) dead easy. Specifically, jQuery simplifies HTML document

1

http://oreilly.com/catalog/9780596000486

traversing and manipulation, browser event handling, DOM animations, Ajax inter-
actions, and cross-browser JavaScript development.

With a formal explanation of jQuery under our belts, let’s next explore why you might
choose to use jQuery.

Why jQuery?
It might seem a bit silly to speak about the merits of jQuery within this cookbook,
especially since you’re reading this cookbook and are likely already aware of the merits.

So, while I might be preaching to the choir here, we’re going to take a quick look at
why a developer might choose to use jQuery. My point in doing this is to foster your
basic knowledge of jQuery by first explaining the “why” before we look at the “how.”

In building a case for jQuery, I’m not going to compare jQuery to its competitors in
order to elevate jQuery’s significance. That’s because I just don’t believe that there
really is a direct competitor. Also, I believe the only library available today that meets
the needs of both designer types and programmer types is jQuery. In this context,
jQuery is in a class of its own.

Of the notorious JavaScript libraries and frameworks in the wild, I truly believe each
has its own niche and value. A broad comparison is silly, but it’s nevertheless attempted
all the time. Heck, I am even guilty of it myself. However, after much thought on the
topic, I truly believe that all JavaScript libraries are good at something. They all have
value. What makes one more valuable than the other depends more upon who is using
it and how it’s being used than what it actually does. Besides, it has been my observation
that micro differences across JavaScript libraries are often trivial in consideration of the
broader goals of JavaScript development. So, without further philosophical ramblings,
here is a list of attributes that builds a case for why you should use jQuery:

• It’s open source, and the project is licensed under an MIT and a GNU General
Public License (GPL) license. It’s free, yo, in multiple ways!

• It’s small (18 KB minified) and gzipped (114 KB, uncompressed).

• It’s incredibly popular, which is to say it has a large community of users and a
healthy amount of contributors who participate as developers and evangelists.

• It normalizes the differences between web browsers so that you don’t have to.

• It’s intentionally a lightweight footprint with a simple yet clever plugin
architecture.

• Its repository of plugins is vast and has seen steady growth since jQuery’s release.

• Its API is fully documented, including inline code examples, which in the world
of JavaScript libraries is a luxury. Heck, any documentation at all was a luxury for
years.

• It’s friendly, which is to say it provides helpful ways to avoid conflicts with other
JavaScript libraries.

2 | Chapter 1: jQuery Basics

http://plugins.jquery.com/

• Its community support is actually fairly useful, including several mailing lists, IRC
channels, and a freakishly insane amount of tutorials, articles, and blog posts from
the jQuery community.

• It’s openly developed, which means anyone can contribute bug fixes, enhance-
ments, and development help.

• Its development is steady and consistent, which is to say the development team is
not afraid of releasing updates.

• Its adoption by large organizations has and will continue to breed longevity and
stability (e.g., Microsoft, Dell, Bank of America, Digg, CBS, Netflix).

• It’s incorporating specifications from the W3C before the browsers do. As an ex-
ample, jQuery supports a good majority of the CSS3 selectors.

• It’s currently tested and optimized for development on modern browsers
(Chrome 1, Chrome Nightly, IE 6, IE 7, IE 8, Opera 9.6, Safari 3.2, WebKit Nightly,
Firefox 2, Firefox 3, Firefox Nightly).

• It’s downright powerful in the hands of designer types as well as programmers.
jQuery does not discriminate.

• Its elegance, methodologies, and philosophy of changing the way JavaScript is
written is becoming a standard in and of itself. Consider just how many other
solutions have borrowed the selector and chaining patterns.

• Its unexplainable by-product of feel-good programming is contagious and certainly
unavoidable; even the critics seem to fall in love with aspects of jQuery.

• Its documentation has many outlets (e.g., API browser, dashboard apps, cheat
sheets) including an offline API browser (AIR application).

• It’s purposely bent to facilitate unobtrusive JavaScript practices.

• It has remained a JavaScript library (as opposed to a framework) at heart while at
the same time providing a sister project for user interface widgets and application
development (jQuery UI).

• Its learning curve is approachable because it builds upon concepts that most de-
velopers and designers already understand (e.g., CSS and HTML).

It is my opinion that the combination of the aforementioned jQuery points, and not
any single attribute on its own, sets it apart from all other solutions. The total jQuery
package is simply unmatched as a JavaScript tool.

The jQuery Philosophy
The jQuery philosophy is “Write less, do more.” This philosophy can be further broken
down into three concepts:

• Finding some elements (via CSS selectors) and doing something with them (via
jQuery methods)

• Chaining multiple jQuery methods on a set of elements

1.0 Introduction | 3

• Using the jQuery wrapper and implicit iteration

Understanding these three concepts in detail is foundational when it comes time to
write your own jQuery code or augment the recipes found in this book. Let’s examine
each of these concepts in detail.

Find some elements and do something with them

Or more specifically stated, locate a set of elements in the DOM, and then do something
with that set of elements. For example, let’s examine a scenario where you want to hide
a <div> from the user, load some new text content into the hidden <div>, change an
attribute of the selected <div>, and then finally make the hidden <div> visible again.

This last sentence translated into jQuery code would look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
</head>
<body>
<div>old content</div>
<script>

//hide all divs on the page
jQuery('div').hide();

//update the text contained inside of all divs
jQuery('div').text('new content');

//add a class attribute with a value of updatedContent to all divs
jQuery('div').addClass("updatedContent");

//show all divs on the page
jQuery('div').show();

</script>
</body>
</html>

Let’s step through these four jQuery statements:

• Hide the <div> element on the page so it’s hidden from the user’s view.

• Replace the text inside the hidden <div> with some new text (new content).

• Update the <div> element with a new attribute (class) and value (updatedContent).

• Show the <div> element on the page so it’s visible again to the viewing user.

If the jQuery code at this point is mystical syntax to you, that’s OK. We’ll dive into the
basics with the first recipe in this chapter. Again, what you need to take away from this
code example is the jQuery concept of “find some elements and do something with

4 | Chapter 1: jQuery Basics

them.” In our code example, we found all the <div> elements in the HTML page using
the jQuery function (jQuery()), and then using jQuery methods we did something with
them (e.g., hide(), text(), addClass(), show()).

Chaining

jQuery is constructed in a manner that will allow jQuery methods to be chained. For
example, why not find an element once and then chain operations onto that element?
Our former code example demonstrating the “Find some elements and do something
with them” concept could be rewritten to a single JavaScript statement using chaining.

This code, using chaining, can be changed from this:

//hide all divs on the page
jQuery('div').hide();

//update the text contained inside of the div
jQuery('div').text('new content');

//add a class attribute with a value of updatedContent to all divs
jQuery('div').addClass("updatedContent");

//show all divs on the page
jQuery('div').show();

to this:

jQuery('div').hide().text('new content').addClass("updatedContent").show();

or, with indenting and line breaks, to this:

jQuery('div')
 .hide()
 .text('new content')
 .addClass("updatedContent")
 .show();

Plainly speaking, chaining simply allows you to apply an endless chain of jQuery meth-
ods on the elements that are currently selected (currently wrapped with jQuery func-
tionality) using the jQuery function. Behind the scenes, the elements previously selected
before a jQuery method was applied are always returned so that the chain can continue.
As you will see in future recipes, plugins are also constructed in this manner (returning
wrapped elements) so that using a plugin does not break the chain.

If it’s not immediately obvious, and based on the code in question, chaining also cuts
down on processing overhead by selecting a set of DOM elements only once, to then
be operated on numerous times by jQuery methods by way of chaining. Avoiding un-
necessary DOM traversing is a critical part of page performance enhancements. When-
ever possible, reuse or cache a set of selected DOM elements.

1.0 Introduction | 5

The jQuery wrapper set

A good majority of the time, if jQuery is involved, you’re going to be getting what is
known as a wrapper. In other words, you’ll be selecting DOM elements from an HTML
page that will be wrapped with jQuery functionality. Personally, I often refer to this as
a “wrapper set” or “wrapped set” because it’s a set of elements wrapped with jQuery
functionality. Sometimes this wrapper set will contain one DOM element; other times
it will contain several. There are even cases where the wrapper set will contain no
elements. In these situations, the methods/properties that jQuery provides will fail
silently if methods are called on an empty wrapper set, which can be handy in avoiding
unneeded if statements.

Now, based on the code we used to demonstrate the “Find some elements and do
something with them” concept, what do you think would happen if we added multiple
<div> elements to the web page? In the following updated code example, I have added
three additional <div> elements to the HTML page, for a total of four <div> elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<script type="text/JavaScript" src="http://ajax.googleapis.com/ajax/libs/
jquery/1.3.0/jquery.min.js"></script> </head>
<body>
<div>old content</div>
<div>old content</div>
<div>old content</div>
<div>old content</div>
<script>
//hide all divs on the page
jQuery('div').hide().text('new content').addClass("updatedContent").show();

</script>
</body>
</html>

You may not have explicitly written any programmatic loops here, but guess what?
jQuery is going to scan the page and place all <div> elements in the wrapper set so that
the jQuery methods I am using here are performed (aka implicit iteration) on each
DOM element in the set. For example, the .hide() method actually applies to each
element in the set. So if you look at our code again, you will see that each method that
we use will be applied to each <div> element on the page. It’s as if you had written a
loop here to invoke each jQuery method on each DOM element. The updated code
example will result in each <div> in the page being hidden, filled with updated text,
given a new class value, and then made visible again.

Wrapping your head around (pun intended) the wrapper set and its default looping
system (aka implicit iteration) is critical for building advanced concepts around loop-
ing. Just keep in mind that a simple loop is occurring here before you actually do any
additional looping (e.g., jQuery('div').each(function(){}). Or another way to look at

6 | Chapter 1: jQuery Basics

this is each element in the wrapper will typically be changed by the jQuery method(s)
that are called.

Something to keep in mind here is there are scenarios that you will learn about in the
coming chapters where only the first element, and not all the elements in the wrapper
set, is affected by the jQuery method (e.g., attr()).

How the jQuery API Is Organized
There is no question that when I first started out with jQuery, my main reason for
selecting it as my JavaScript library was simply that it had been properly documented
(and the gazillion plugins!). Later, I realized another factor that cemented my love affair
with jQuery was the fact that the API was organized into logical categories. Just by
looking at how the API was organized, I could narrow down the functionality I needed.

Before you really get started with jQuery, I suggest visiting the documentation online
and simply digesting how the API is organized. By understanding how the API is or-
ganized, you’ll more quickly navigate the documentation to the exact information you
need, which is actually a significant advantage given that there are really a lot of different
ways to code a jQuery solution. It’s so robust that it’s easy to get hung up on imple-
mentation because of the number of solutions for a single problem. I’ve replicated here
for you how the API is organized. I suggest memorizing the API outline, or at the very
least the top-level categories.

• jQuery Core

— The jQuery Function

— jQuery Object Accessors

— Data

— Plugins

— Interoperability

• Selectors

— Basics

— Hierarchy

— Basic Filters

— Content Filters

— Visibility Filters

— Attribute Filters

— Child Filters

— Forms

— Form Filters

• Attributes

1.0 Introduction | 7

http://docs.jquery.com/Main_Page

— Attr

— Class

— HTML

— Text

— Value

• Traversing

— Filtering

— Finding

— Chaining

• Manipulation

— Changing Contents

— Inserting Inside

— Inserting Outside

— Inserting Around

— Replacing

— Removing

— Copying

• CSS

— CSS

— Positioning

— Height and Widths

• Events

— Page Load

— Event Handling

— Live Events

— Interaction Helpers

— Event Helpers

• Effects

— Basics

— Sliding

— Fading

— Custom

— Settings

• Ajax

— AJAX Requests

8 | Chapter 1: jQuery Basics

— AJAX Events

— Misc.

• Utilities

— Browser and Feature Detection

— Array and Object Operations

— Test Operations

— String Operations

— Urls

Before we jump into a sequence of basic jQuery recipes, I would like to mention that
the recipes found in this chapter build on each other. That is, there is a logical formation
of knowledge as you progress from the first recipe to the last. It’s my suggestion, for
your first reading of these recipes, that you read them in order from 1.1 to 1.17.

1.1 Including the jQuery Library Code in an HTML Page
Problem
You want to use the jQuery JavaScript library on a web page.

Solution
There are currently two ideal solutions for embedding the jQuery library in a web page:

• Use the Google-hosted content delivery network (CDN) to include a version of
jQuery (used in this chapter).

• Download your own version of jQuery from jQuery.com and host it on your own
server or local filesystem.

Discussion
Including the jQuery JavaScript library isn’t any different from including any other
external JavaScript file. You simply use the HTML <script> element and provide the
element a value (URL or directory path) for its src="" attribute, and the external file
you are linking to will be included in the web page. For example, the following is a
template that includes the jQuery library that you can use to start any jQuery project:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
</head>
<body>

1.1 Including the jQuery Library Code in an HTML Page | 9

http://jquery.com

<script type="text/JavaScript">
 alert('jQuery ' + jQuery.fn.jquery);
</script>
</body>
</html>

Notice that I am using—and highly recommend using for public web pages—the
Google-hosted minified version of jQuery. However, debugging JavaScript errors in
minified code is not ideal. During code development, or on the production site, it ac-
tually might be better to use the nonminified version from Google for the purpose of
debugging potential JavaScript errors. For more information about using the Google-
hosted version of jQuery, you can visit the Ajax libraries API site on the Web at http://
code.google.com/apis/ajaxlibs/.

It’s of course also possible, and mostly likely old hat, to host a copy of the jQuery code
yourself. In most circumstances, however, this would be silly to do because Google has
been kind enough to host it for you. By using a Google-hosted version of jQuery, you
benefit from a stable, reliable, high-speed, and globally available copy of jQuery. As
well, you reap the benefit of decreased latency, increased parallelism, and better cach-
ing. This of course could be accomplished without using Google’s solution, but it would
most likely cost you a dime or two.

Now, for whatever reason, you might not want to use the Google-hosted version of
jQuery. You might want a customized version of jQuery, or your usage might not
require/have access to an Internet connection. Or, you simply might believe that Google
is “The Man” and wish not to submit to usage because you are a control freak and
conspiracy fanatic. So, for those who do not need, or simply who do not want, to use
a Google-hosted copy of the jQuery code, jQuery can be downloaded from
jQuery.com and hosted locally on your own server or local filesystem. Based on the
template I’ve provided in this recipe, you would simply replace the src attribute value
with a URL or directory path to the location of the jQuery JavaScript file you’ve down-
loaded.

1.2 Executing jQuery/JavaScript Coded After the DOM Has
Loaded but Before Complete Page Load
Problem
Modern JavaScript applications using unobtrusive JavaScript methodologies typically
execute JavaScript code only after the DOM has been completely loaded. And the reality
of the situation is that any DOM traversing and manipulation will require that the DOM
is loaded before it can be operated on. What’s needed is a way to determine when the
client, most often a web browser, has completely loaded the DOM but has possibly not
yet completely loaded all assets such as images and SWF files. If we were to use the
window.onload event in this situation, the entire document including all assets would

10 | Chapter 1: jQuery Basics

http://code.google.com/apis/ajaxlibs/
http://code.google.com/apis/ajaxlibs/
http://docs.jquery.com/Downloading_jQuery

need to be completely loaded before the onload event fired. That’s just too time-
consuming for most web surfers. What’s needed is an event that will tell us when the
DOM alone is ready to be traversed and manipulated.

Solution
jQuery provides the ready() method, which is a custom event handler that is typically
bound to the DOM’s document object. The ready() method is passed a single param-
eter, a function, that contains the JavaScript code that should be executed once the
DOM is ready to be traversed and manipulated. The following is a simple example of
this event opening an alert() window once the DOM is ready but before the page is
completely loaded:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery(document).ready(function(){//DOM not loaded, must use ready event
 alert(jQuery('p').text());
 });
</script>
</head>
<body>
<p>The DOM is ready!</p>
</body>
</html>

Discussion
The ready() event handler method is jQuery’s replacement for using the JavaScript core
window.onload event. It can be used as many times as you like. When using this custom
event, it’s advisable that it be included in your web pages after the inclusion of stylesheet
declarations and includes. Doing this will ensure that all element properties are cor-
rectly defined before any jQuery code or JavaScript code will be executed by the
ready() event.

Additionally, the jQuery function itself provides a shortcut for using the jQuery custom
ready event. Using this shortcut, the following alert() example can be rewritten like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery(function(){ //DOM not loaded, must use ready event

1.2 Executing jQuery/JavaScript Coded After the DOM Has Loaded but Before Complete Page Load | 11

 alert(jQuery('p').text());
 });
</script>
</head>
<body>
<p>The DOM is ready!</p>
</body>
</html>

The use of this custom jQuery event is necessary only if JavaScript has to be embedded
in the document flow at the top of the page and encapsulated in the <head> element. I
simply avoid the usage of the ready() event by placing all JavaScript includes and inline
code before the closing <body> element. I do this for two reasons.

First, modern optimization techniques have declared that pages load faster when the
JavaScript is loaded by the browser at the end of a page parse. In other words, if you
put JavaScript code at the bottom of a web page, then the browser will load everything
in front of it before it loads the JavaScript. This is a good thing because most browsers
will typically stop processing other loading initiatives until the JavaScript engine has
compiled the JavaScript contained in a web page. It’s sort of a bottleneck in a sense
that you have JavaScript at the top of a web page document. I realize that for some
situations it’s easier to place JavaScript in the <head> element. But honestly, I’ve never
seen a situation where this is absolutely required. Any obstacle that I’ve encountered
during my development by placing JavaScript at the bottom of the page has been easily
overcome and well worth the optimization gains.

Second, if speedy web pages are our goal, why wrap more functionality around a sit-
uation that can be elevated by simply moving the code to the bottom of the page? When
given the choice between more code or less code, I choose less code. Not using the
ready() event results in using less code, especially since less code always runs faster
than more code.

With some rationale out of the way, here is an example of our alert() code that does
not use the ready() event:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<p>The DOM is ready!</p>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 alert(jQuery('p').text());//go for it the DOM is loaded
</script>
</body>
</html>

12 | Chapter 1: jQuery Basics

Notice that I have placed all of my JavaScript before the closing </body> element. Any
additional markup should be placed above the JavaScript in the HTML document.

1.3 Selecting DOM Elements Using Selectors and the jQuery
Function
Problem
You need to select a single DOM element and/or a set of DOM elements in order to
operate on the element(s) using jQuery methods.

Solution
jQuery provides two options when you need to select element(s) from the DOM. Both
options require the use of the jQuery function (jQuery() or alias $()). The first option,
which uses CSS selectors and custom selectors, is by far the most used and most elo-
quent solution. By passing the jQuery function a string containing a selector expression,
the function will traverse the DOM and locate the DOM nodes defined by the expres-
sion. As an example, the following code will select all the <a> elements in the HTML
document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
link
link
link
link
link
link
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 //alerts there are 6 elements
 alert('Page contains ' + jQuery('a').length + ' <a> elements!');
</script>
</body>
</html>

If you were to run this HTML page in a web browser, you would see that the code
executes a browser alert() that informs us that the page contains six <a> elements. I
passed this value to the alert() method by first selecting all the <a> elements and then
using the length property to return the number of elements in the jQuery wrapper set.

1.3 Selecting DOM Elements Using Selectors and the jQuery Function | 13

You should be aware that the first parameter of the jQuery function, as we are using it
here, will also accept multiple expressions. To do this, simply separate multiple selec-
tors with a comma inside the same string that is passed as the first parameter to the
jQuery function. Here is an example of what that might look like:

jQuery('selector1, selector2, selector3').length;

Our second option for selecting DOM elements and the less common option is to pass
the jQuery function an actual JavaScript reference to DOM element(s). As an example,
the following code will select all the <a> elements in the HTML document. Notice that
I’m passing the jQuery function an array of <a> elements collected using the
getElementsByTagName DOM method. This example produces the same exact results as
our previous code example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body bgcolor="yellow"> <!-- yes the attribute is depreciated, I know, roll
with it -->
link
link
link
link
link
link
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 //alerts there are 6 elements
 alert('Page contains ' + jQuery(document.getElementsByTagName('a')).length +
' <a> Elements, And has a '
 + jQuery(document.body).attr('bgcolor') + ' background');
</script>
</body>
</html>

Discussion
The heavy lifting that jQuery is known for is partially based on the selector engine,
Sizzle, that selects DOM element(s) from an HTML document. While you have the
option, and it’s a nice option when you need it, passing the jQuery function DOM
references is not what put jQuery on everyone’s radar. It’s the vast and powerful options
available with selectors that make jQuery so unique.

Throughout the rest of the book, you will find powerful and robust selectors. When
you see one, make sure you fully understand its function. This knowledge will serve
you well with future coding endeavors using jQuery.

14 | Chapter 1: jQuery Basics

http://sizzlejs.com/

1.4 Selecting DOM Elements Within a Specified Context
Problem
You need a reference to a single DOM element or a set of DOM elements in the context
of another DOM element or document in order to operate on the element(s) using
jQuery methods.

Solution
The jQuery function when passed a CSS expression will also accept a second parameter
that tells the jQuery function to which context it should search for the DOM elements
based on the expression. The second parameter in this case can be a DOM reference,
jQuery wrapper, or document. In the following code, there are 12 <input> elements.
Notice how I use a specific context, based on the <form> element, to select only par-
ticular <input> elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>

<form>
<input name="" type="checkbox" />
<input name="" type="radio" />
<input name="" type="text" />
<input name="" type="button" />
</form>

<form>
<input name="" type="checkbox" />
<input name="" type="radio" />
<input name="" type="text" />
<input name="" type="button" />
</form>

<input name="" type="checkbox" />
<input name="" type="radio" />
<input name="" type="text" />
<input name="" type="button" />

<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">

 //searches within all form elements, using a wrapper for context, alerts "8 inputs"
 alert('selected ' + jQuery('input',$('form')).length + ' inputs');

 //search with the first form element, using DOM reference as the context, alerts

1.4 Selecting DOM Elements Within a Specified Context | 15

 //"4 inputs"
 alert('selected' + jQuery('input',document.forms[0]).length + ' inputs');

 //search within the body element for all input elements using an expression,
 //alerts "12 inputs"
 alert('selected' + jQuery('input','body').length + ' inputs');

</script>
</body>
</html>

Discussion
It’s also possible, as mentioned in the solution of this recipe, to select documents as
the context for searching. For example, it’s possible to search within the context of an
XML document that is sent back from doing an XHR request (Ajax). You can find more
details about this usage in Chapter 16.

1.5 Filtering a Wrapper Set of DOM Elements
Problem
You have a set of selected DOM elements in a jQuery wrapper set but want to remove
DOM elements from the set that do not match a new specified expression(s) in order
to create a new set of elements to operate on.

Solution
The jQuery filter method, used on a jQuery wrapper set of DOM elements, can exclude
elements that do not match a specified expression(s). In short, the filter() method
allows you to filter the current set of elements. This is an important distinction from
the jQuery find method, which will reduce a wrapped set of DOM elements by finding
(via a new selector expression) new elements, including child elements of the current
wrapped set.

To understand the filter method, let’s examine the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
link
link

link
link

16 | Chapter 1: jQuery Basics

link
link
link
link
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">

 //alerts 4 left in the set
 alert(jQuery('a').filter('.external').length + ' external links');
</script>
</body>
</html>

The HTML page in the code example just shown contains a web page with 10 <a>
elements. Those links that are external links are given a class name of external. Using
the jQuery function, we select all <a> elements on the page. Then, using the filter meth-
od, all those elements that do not have a class attribute value of external are removed
from the original set. Once the initial set of DOM elements are altered using the
filter() method, I invoke the length property, which will tell me how many elements
are now in my new set after the filter has been applied.

Discussion
It’s also possible to send the filter() method a function that can be used to filter the
wrapped set. Our previous code example, which passes the filter() method a string
expression, can be changed to use a function instead:

alert(
 jQuery('a')
 .filter(function(index){ return $(this).hasClass('external');})
 .length + ' external links'
);

Notice that I am now passing the filter() method an anonymous function. This func-
tion is called with a context equal to the current element. That means when I use
$(this) within the function, I am actually referring to each DOM element in the wrap-
per set. Within the function, I am checking each <a> element in the wrapper set to see
whether the element has a class value (hasClass()) of external. If it does, Boolean true,
then keep the element in the set, and if it doesn’t (false), then remove the element from
the set. Another way to look at this is if the function returns false, then the element is
removed. If the function returns any other data value besides false, then the element
will remain in the wrapper set.

You may have noticed that I have passed the function a parameter named index that I
am not using. This parameter, if needed, can be used to refer numerically to the index
of the element in the jQuery wrapper set.

1.5 Filtering a Wrapper Set of DOM Elements | 17

1.6 Finding Descendant Elements Within the Currently
Selected Wrapper Set
Problem
You have a set of selected DOM elements (or a single element) and want to find de-
scendant (children) elements within the context of the currently selected elements.

Solution
Use the .find() method to create a new wrapper set of elements based on the context
of the current set and their descendants. For example, say that you have a web page
that contains several paragraphs. Encapsulated inside of these paragraphs are words
that are emphasized (italic). If you’d like to select only elements contained within
<p> elements, you could do so like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<p>Ut ad videntur facilisis elit cum. Nibh insitam erat facit
saepius magna. Nam ex liber iriure et imperdiet. Et mirum eros
iis te habent. </p>
<p>Claram claritatem eu amet dignissim magna. Dignissim quam elit facer eros
illum. Et qui ex esse tincidunt anteposuerit. Nulla nam odio ii
vulputate feugait.</p>
<p>In quis laoreet te legunt euismod. Claritatem consuetudium
wisi sit velit facilisi.</p>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 //alerts total italic words found inside of <p> elements
 alert('The three paragraphs in all contain ' +
 jQuery('p').find('em').length + '
italic words');
</script>
</body>
</html>

Keep in mind that we could have also written this code by passing a contextual reference
as a second parameter to the jQuery function:

alert('The three paragraphs in all contain ' + jQuery('em',$('p')).length +
' italic words');

Additionally, it’s worth mentioning that the last two code examples are demonstrative
in purpose. It is likely more logical, if not pragmatic, to use a CSS selector expression
to select all the descendant italic elements contained within the ancestor <p> elements.

18 | Chapter 1: jQuery Basics

alert('The three paragraphs in all contain ' + jQuery('p em').length +
' italic words');

Discussion
The jQuery .find() method can be used to create a new set of elements based on context
of the current set of DOM elements and their children elements. People often confuse
the use of the .filter() method and .find() method. The easiest way to remember
the difference is to keep in mind that .find() will operate/select the children of the
current set while .filter() will only operate on the current set of elements. In other
words, if you want to change the current wrapper set by using it as a context to further
select the children of the elements selected, use .find(). If you only want to filter the
current wrapped set and get a new subset of the current DOM elements in the set only,
use .filter(). To boil this down even more, find() returns children elements, while
filter() only filters what is in the current wrapper set.

1.7 Returning to the Prior Selection Before a Destructive
Change
Problem
A destructive jQuery method (e.g., filter() or find()) that was used on a set of ele-
ments needs to be removed so that the set prior to the use of the destructive method is
returned to its previous state and can then be operated as if the destructive method had
never been invoked.

Solution
jQuery provides the end() method so that you can return to the previous set of DOM
elements that were selected before using a destructive method. To understand the
end() method, let’s examine the following HTML.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<p>text</p>
<p class="middle">Middle text</p>
<p>text</p>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 alert(jQuery('p').filter('.middle').length); //alerts 1
 alert(jQuery('p').filter('.middle').end().length); //alerts 3
 alert(jQuery('p').filter('.middle').find('span')

1.7 Returning to the Prior Selection Before a Destructive Change | 19

.end().end().length); //alerts 3
</script>
</body>
</html>

The first alert() statement in the code contains a jQuery statement that will search the
document for all <p> elements and then apply filter() to the selected <p> elements in
the set selecting only the one(s) with a class of middle. The length property then reports
how many elements are left in the set:

alert(jQuery('p').filter('.middle').length); //alerts 1

The next alert() statement makes use of the end() method. Here we are doing every-
thing we did in the prior statement except that we are undoing the filter() method
and returning to the set of elements contained in the wrapper set before the filter()
method was applied:

alert(jQuery('p').filter('.middle').end().length); //alerts 3

The last alert() statement demonstrates how the end() method is used twice to remove
both the filter() and find() destructive changes, returning the wrapper set to its orig-
inal composition:

alert(jQuery('p').filter('.middle').find('span').end().end().length); //alerts 3

Discussion
If the end() method is used and there were no prior destructive operations performed,
an empty set is returned. A destructive operation is any operation that changes the
set of matched jQuery elements, which means any traversing or manipulation method
that returns a jQuery object, including add(), andSelf(), children(), closes(),
filter(), find(), map(), next(), nextAll(), not(), parent(), parents(), prev(),
prevAll(), siblings(), slice(), clone(), appendTo(), prependTo(), insertBefore(),
insertAfter(), and replaceAll().

1.8 Including the Previous Selection with the Current Selection
Problem
You have just manipulated a set of elements in order to acquire a new set of elements.
However, you want to operate on the prior set as well as the current set.

Solution
You can combine a prior selection of DOM elements with the current selection by using
the andSelf() method. For example, in the following code, we are first selecting all
<div> elements on the page. Next we manipulate this set of elements by finding all
<p> elements contained within the <div> elements. Now, in order to operate on both
the <div> and the <p> elements found within the <div>, we could include the <div> into

20 | Chapter 1: jQuery Basics

the current set by using andSelf(). Had I omitted the andSelf(), the border color would
have only been applied to the <p> elements:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<div>
<p>Paragraph</p>
<p>Paragraph</p>
</div>
<script type="text/JavaScript" src="http://ajax.googleapis.com/
ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery('div').find('p').andSelf().css('border','1px solid #993300');
</script>
</body>
</html>

Discussion
Keep in mind that when you use the andSelf() method, it will only add into the current
set being operated on and the prior set, but not all prior sets.

1.9 Traversing the DOM Based on Your Current Context to
Acquire a New Set of DOM Elements
Problem
You have selected a set of DOM elements, and based on the position of the selections
within the DOM tree structure, you want to traverse the DOM to acquire a new set of
elements to operate on.

Solution
jQuery provides a set of methods for traversing the DOM based on the context of the
currently selected DOM element(s).

For example, let’s examine the following HTML snippet:

<div>

link
link
link
link

</div>

1.9 Traversing the DOM Based on Your Current Context to Acquire a New Set of DOM Elements | 21

Now, let’s select the second element using the :eq() index custom selector:

//selects the second element in the set of 's by index, index starts at 0
jQuery('li:eq(1)');

We now have a context, a starting point within the HTML structure. Our starting point
is the second element. From here we can go anywhere—well, almost anywhere.
Let’s see where we can go using a couple of the methods jQuery provides for traversing
the DOM. Read the comments in the code for clarification:

jQuery('li:eq(1)').next() //selects the third

jQuery('li:eq(1)').prev() //selects the first

jQuery('li:eq(1)').parent() //selects the

jQuery('li:eq(1)').parent().children() //selects all s

jQuery('li:eq(1)').nextAll() //selects all the s after the second

jQuery('li:eq(1)').prevAll() //selects all the s before the second

Keep in mind that these traversing methods produce a new wrapper set, and to return
to the previous wrapper set, you can use end().

Discussion
The traversing methods shown thus far have demonstrated simple traverses. There are
two additional concepts that are important to know about traversing.

The first concept and likely most obvious is that traversing methods can be chained.
Let’s examine again the following jQuery statement from earlier:

jQuery('li:eq(1)').parent().children() //selects all 's

Notice that I have traversed from the second element to the parent element
and then again traversed from the parent element to selecting all the children elements
of the element. The jQuery wrapper set will now contain all the elements
contained within the . Of course, this is a contrived example for the purpose of
demonstrating traversing methods. Had we really wanted a wrapper set of just
elements, it would have been much simpler to select all the elements from the
get-go (e.g., jQuery('li')).

The second concept that you need to keep in mind when dealing with the traversing
methods is that many of the methods will accept an optional parameter that can be
used to filter the selections. Let’s take our chained example again and look at how we
could change it so that only the last element was selected. Keep in mind that this
is a contrived example for the purpose of demonstrating how a traversing method can
be passed an expression used for selecting a very specific element:

jQuery('li:eq(1)').parent().children(':last') //selects the last

22 | Chapter 1: jQuery Basics

jQuery provides additional traversing methods that were not shown here. For a com-
plete list and documentation, have a look at http://docs.jquery.com/Traversing. You will
find these additional traversing methods used throughout this book.

1.10 Creating, Operating on, and Inserting DOM Elements
Problem
You want to create new DOM elements (or a single element) that are immediately
selected, operated on, and then injected into the DOM.

Solution
If you haven’t figured it out yet, the jQuery function is multifaceted in that this one
function performs differently depending upon the makeup of the parameter(s) you send
it. If you provide the function with a text string of raw HTML, it will create these
elements for you on the fly. For example, the following statement will create an <a>
element wrapped inside of a <p> element with a text node encapsulated inside of the
<p> and <a> elements:

jQuery('<p><a>jQuery</p>');

Now, with an element created, you can use jQuery methods to further operate on the
elements you just created. It’s as if you had selected the <p> element from the get-go in
an existing HTML document. For example, we could operate on the <a> by using
the .find() method to select the <a> element and then set one of its attributes. In the
case of the following code, we are setting the href attribute with a value of http://
www.jquery.com:

jQuery('<p><a>jQuery</p>').find('a').attr('href','http://www.jquery.com');

This is great, right? Well, it’s about to get better because all we have done so far is create
elements on the fly and manipulate those elements in code. We have yet to actually
change the currently loaded DOM, so to speak. To do this, we’ll have to use the ma-
nipulation methods provided by jQuery. The following is our code in the context of an
HTML document. Here we are creating elements, operating on those elements, and
then inserting those elements into the DOM using the appendTo() manipulation
method:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">

1.10 Creating, Operating on, and Inserting DOM Elements | 23

http://docs.jquery.com/Traversing

jQuery('<p><a>jQuery</p>').find('a').attr('href','http://www.jquery.com')
 .end().appendTo('body');
</script>
</body>
</html>

Notice how I am using the end() method here to undo the find() method so that when
I call the appendTo() method, it appends what was originally contained in the initial
wrapper set.

Discussion
In this recipe we’ve passed the jQuery function a string of raw HTML that is taken and
used to create DOM elements on the fly. It’s also possible to simply pass the jQuery
function a DOM object created by the DOM method createElement():

jQuery(document.createElement('p')).appendTo('body'); //adds an empty p element
to the page

Of course, this could be rather laborious depending upon the specifics of the usage
when a string of HTML containing multiple elements will work just fine.

It’s also worth mentioning here that we’ve only scratched the surface of the manipu-
lation methods by using the appendTo() method. In addition to the appendTo() method,
there are also the following manipulation methods:

• append()

• prepend()

• prependTo()

• after()

• before()

• insertAfter()

• insertBefore()

• wrap()

• wrapAll()

• wrapInner()

1.11 Removing DOM Elements
Problem
You want to remove elements from the DOM.

24 | Chapter 1: jQuery Basics

Solution
The remove() method can be used to remove a selected set of elements and their children
elements from the DOM. Examine the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<h3>Anchors</h3>
Anchor Element
Anchor Element
Anchor Element
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery('a').remove();
</script>
</body>
</html>

When the preceding code is loaded into a browser, the anchor elements will remain in
the page until the JavaScript is executed. Once the remove() method is used to remove
all anchor elements from the DOM, the page will visually contain only an <h3> element.

It’s also possible to pass the method an expression to filter the set of elements to be
removed. For example, our code could change to remove only anchors with a specific
class:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<h3>Anchors</h3>
Anchor Element
Anchor Element
Anchor Element
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery('a').remove('.remove');
</script>
</body>
</html>

Discussion
When using the jQuery remove() method, you need to keep two things in mind:

1.11 Removing DOM Elements | 25

• While the elements selected are removed from the DOM using remove(), they have
not been removed from the jQuery wrapper set. That means in theory you could
continue operating on them and even add them back into the DOM if desired.

• This method will not only remove the elements from the DOM, but it will also
remove all event handlers and internally cached data that the elements removed
might have contained.

1.12 Replacing DOM Elements
Problem
You need to replace DOM nodes currently in the DOM with new DOM nodes.

Solution
Using the replaceWith() method, we can select a set of DOM elements for replacement.
In the following code example, we use the replaceWith() method to replace all
elements with a class attribute of remove with a new DOM structure:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>

<li class='remove'>name
name
<li class='remove'>name
<li class='remove'>name
name
<li class='remove'>name
name
<li class='remove'>name

<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery('li.remove').replaceWith('removed');
</script>
</body>
</html>

The new DOM structure added to the DOM is a string parameter passed into the
replaceWith() method. In our example, all the elements, including children ele-
ments, are replaced with the new structure, removed.

26 | Chapter 1: jQuery Basics

Discussion
jQuery provides an inverse to this method called replaceAll() that does the same task
with the parameters reversed. For example, we could rewrite the jQuery code found in
our recipe code like so:

jQuery('removed').replaceAll('li.remove');

Here we are passing the jQuery function the HTML string and then using the
replaceAll() method to select the DOM node and its children that we want to be
removed and replaced.

1.13 Cloning DOM Elements
Problem
You need to clone/copy a portion of the DOM.

Solution
jQuery provides the clone() method for copying DOM elements. Its usage is straight-
forward. Simply select the DOM elements using the jQuery function, and then call the
clone() method on the selected set of element(s). The result is a copy of the DOM
structure being returned for chaining instead of the originally selected DOM elements.
In the following code, I am cloning the element and then appending this copy back
into the DOM using the inserting method appendTo(). Essentially, I am adding another
 structure to the page exactly like the one that is already there:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>

list
list
list
list

<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery('ul').clone().appendTo('body');
</script>
</body>
</html>

1.13 Cloning DOM Elements | 27

Discussion
The cloning method is actually very handy for moving DOM snippets around inside of
the DOM. It’s especially useful when you want to not only copy and move the DOM
elements but also the events attached to the cloned DOM elements. Closely examine
the HTML and jQuery here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<ul id="a">
list
list
list
list

<ul id="b">
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/JavaScript">
 jQuery('ul#a li')
 .click(function(){alert('List Item Clicked')})
 .parent()
 .clone(true)
 .find('li')
 .appendTo('#b')
 .end()
 .end()
 .remove();
</script>
</body>
</html>

If you were to run this code in a browser, it would clone the elements on the page
that have a click event attached to them, insert these newly cloned elements (including
events) into the empty , and then remove the element that we cloned.

This might stretch a new jQuery developer’s mind, so let’s examine this jQuery state-
ment by stepping through this code in order to explain the chained methods:

1. jQuery('ul#a li') = Select element with an id attribute of a and then select
all the elements inside of the .

2. .click(function(){alert('List Item Clicked')}) = Add a click event to each .

3. .parent() = Traverse the DOM, by changing my selected set to the element.

4. .clone(true) = Clone the element and all its children, including any events
attached to the elements that are being cloned. This is done by passing the
clone() method a Boolean value of true.

28 | Chapter 1: jQuery Basics

5. .find('li') = Now, within the cloned elements, change the set of elements to only
the elements contained within the cloned element.

6. .appendTo('#b') = Take these selected cloned elements and place them inside
of the element that has an id attribute value of b.

7. .end() = Return to the previous selected set of elements, which was the cloned
 element.

8. .end() = Return to the previous selected set of elements, which was the original
 element we cloned.

9. .remove() = Remove the original element.

If it’s not obvious, understanding how to manipulate the selected set of elements or
revert to the previous selected set is crucial for complex jQuery statements.

1.14 Getting, Setting, and Removing DOM Element Attributes
Problem
You have selected a DOM element using the jQuery function and need to get or set the
value of the DOM element’s attribute.

Solution
jQuery provides the attr() method for getting and setting attribute values. In the fol-
lowing code, we are going to be setting and then getting the value of an <a> element’s
href attribute:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<a>jquery.com
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js">
</script>
<script type="text/JavaScript">
// alerts the jQuery home page URL
alert(
 jQuery('a').attr('href','http://www.jquery.com').attr('href')
);
</script>
</body>
</html>

As you can see in the code example, we are selecting the only <a> element in the HTML
document, setting its href attribute, and then getting its value with the same attr()

1.14 Getting, Setting, and Removing DOM Element Attributes | 29

method by passing the method the attribute name alone. Had there been multiple
<a> elements in the document, the attr() method would access the first matched ele-
ment. The code when loaded into a browser will alert() the value that we set for the
href attribute.

Now, since most elements have more than one attribute available, it’s also possible to
set multiple attribute values using a single attr() method. For example, we could also
set the title attribute in the previous example by passing the attr() method an object
instead of two string parameters:

jQuery('a').attr({'href':'http://www.jquery.com','title':'jquery.com'}).attr('href')

With the ability to add attributes to elements also comes the ability to remove attributes
and their values. The removeAttr() method can be used to remove attributes from
HTML elements. To use this method, simply pass it a string value of the attribute you’d
like to remove (e.g., jQuery('a')removeAttr('title')).

Discussion
In addition to the attr() method, jQuery provides a very specific set of methods for
working with the HTML element class attribute. Since the class attribute can contain
several values (e.g., class="class1 class2 class3"), these unique attribute methods
are used to manage these values.

These jQuery methods are as follows:

addClass()
Updates the class attribute value with a new class/value including any classes that
were already set

hasClass()
Checks the value of the class attribute for a specific class

removeClass()
Removes a unique class from the class attribute while keeping any values already
set

toggleClass()
Adds the specified class if it is not present; removes the specified class if it is present

1.15 Getting and Setting HTML Content
Problem
You need to get or set a chunk of HTML content in the current web page.

30 | Chapter 1: jQuery Basics

Solution
jQuery provides the html() method for getting and setting chunks (or DOM structures)
of HTML elements. In the following code, we use this method to set and then get the
HTML value of the <p> element found in the HTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>
<p></p>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js">
</script>
<script type="text/JavaScript">
jQuery('p').html('Hello World, I am a <p> element.');
alert(jQuery('p').html());
</script>
</body>
</html>

Running this code in a browser will result in a browser alerting the HTML content
contained within the <p> element, which we set using the html() method and then
retrieved using the html() method.

Discussion
This method uses the DOM innerHTML property to get and set chunks of HTML. You
should also be aware that html() is not available on XML documents (although it will
work for XHTML documents).

1.16 Getting and Setting Text Content
Problem
You need to get or set the text that is contained inside of an HTML element(s).

Solution
jQuery provides the text() method for getting and setting the text content of elements.
In the following code, we use this method to set and then get the text value of the <p>
element found in the HTML document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

1.16 Getting and Setting Text Content | 31

</head>
<body>
<p></p>
<script type="text/JavaScript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js">
</script>
<script type="text/JavaScript">
 jQuery('p').text('Hello World, I am a <p> element.');
 alert(jQuery('p').text());
</script>
</body>
</html>

Running this code in a browser will result in a browser alerting the content of the <p>
element, which we set using the text() method and then retrieved using the text()
method.

Discussion
It’s important to remember that the text() method is not unlike html() except that the
text() method will escape HTML (replace < and > with their HTML entities). This
means that if you place tags inside of the text string passed to the text() method, it will
convert these tags to their HTML entities (< and >).

1.17 Using the $ Alias Without Creating Global Conflicts
Problem
You want to use the shortcut $ alias instead of typing the global namespace name
(jQuery) without fear of global conflicts.

Solution
The solution here is to create an anonymous self-invoking function that we pass the
jQuery object to and then use the $ character as a parameter pointer to the jQuery
object.

For example, all jQuery code could be encapsulated inside the following self-invoking
function:

(function($){ //function to create private scope with $ parameter
 //private scope and using $ without worry of conflict
})(jQuery); //invoke nameless function and pass it the jQuery object

Discussion
Essentially, what is going on here is that we have passed the global reference to jQuery
to a function that creates a private scope. Had we not done this and chosen to use the
shorthand $ alias in the global scope, we would be taking a risk by assuming that no

32 | Chapter 1: jQuery Basics

other scripts included in the HTML document (or scripts included in the future) use
the $ character. Why risk it when you can just create your own private scope?

Another advantage to doing this is that code included inside of the anonymous self-
invoking function will run in its own private scope. You can rest assured that anything
that is placed inside the function will likely never cause a conflict with other JavaScript
code written in the global scope. So, again, why risk programmatic collisions? Just
create your own private scope.

1.17 Using the $ Alias Without Creating Global Conflicts | 33

CHAPTER 2

Selecting Elements with jQuery

James Padolsey

2.0 Introduction
At the very core of jQuery is its selector engine, allowing you to select elements within
any document based on names, attributes, states, and more. Because of CSS’s popu-
larity, it made sense to adopt its selector syntax to make it simple to select elements in
jQuery. As well as supporting most of the selectors specified in the CSS 1–3 specifica-
tions, jQuery adds quite a few custom selectors that can be used to select elements based
on special states and characteristics. Additionally, you can create your own custom
selectors! This chapter discusses some of the more common problems encountered
while selecting elements with jQuery.

Before the first recipe, let’s discuss a few basic principles.

The easiest way to target a specific element or a set of elements within a document is
by using a CSS selector within the jQuery wrapper function, like so:

jQuery('#content p a');
 // Select all anchor elements within all paragraph elements within #content

Now that we’ve selected the elements we’re after, we can run any of jQuery’s methods
on that collection. For example, adding a class of selected to all links is as simple as:

jQuery('#content p a').addClass('selected');

jQuery offers many DOM traversal methods to aid in the element selection process,
such as next(), prev(), and parent(). These and other methods accept a selector ex-
pression as their only parameter, which filters the returned results accordingly. So, you
can use CSS selectors in a number of places, not just within jQuery(...).

When constructing selectors, there’s one general rule for optimization: be only as spe-
cific as you need to be. It’s important to remember that the more complicated a selector
is, the more time it will take jQuery to process the string. jQuery uses native DOM
methods to retrieve the elements you’re after. The fact that you can use selectors is only
a product of a nicely polished abstraction; there’s nothing wrong with this, but it is

35

very important to understand the ramifications of what you’re writing. Here is a typical
example of an unnecessarily complicated selector:

jQuery('body div#wrapper div#content');

A higher degree of specificity does not necessarily mean it’s faster. The previous selector
can be rewritten to this:

jQuery('#content');

This has the same effect but manages to shave off the overhead of the previous version.
Also note that sometimes you can further optimize by specifying a context for your
selectors; this will be discussed later in the chapter (see Recipe 2.11).

2.1 Selecting Child Elements Only
Problem
You need to select one or more direct children of a particular element.

Solution
Use the direct descendant combinator (>). This combinator expects two selector ex-
pressions, one on either side. For example, if you want to select all anchor elements
that reside directly beneath list items, you could use this selector: li > a. This would
select all anchors that are children of a list item; in other words, all anchors that exist
directly beneath list items. Here’s an example:

Category
<ul id="nav">
 Anchor 1
 Anchor 2
 Anchor 3

Now, to select only the anchors within each list item, you would call jQuery like so:

jQuery('#nav li > a');
 // This selects two elements, as expected

The third anchor within the #nav list is not selected because it’s not a child of a list item;
it’s a child of a element.

Discussion
It’s important to distinguish between a child and a descendant. A descendant is any
element existing within another element, whereas a child is a direct descendant; the
analogy of children and parents helps massively since the DOM’s hierarchy is largely
similar to that.

36 | Chapter 2: Selecting Elements with jQuery

It’s worth noting that combinators like > can be used without an expression on the left
side if a context is already specified:

jQuery('> p', '#content');
 // Fundamentally the same as jQuery('#content > p')

Selecting children in a more programmatic environment should be done using jQuery’s
children() method, to which you can pass a selector to filter the returned elements.
This would select all direct children of the #content element:

jQuery('#content').children();

The preceding code is essentially the same as jQuery('#content > *') with one impor-
tant difference; it’s faster. Instead of parsing your selector, jQuery knows what you
want immediately. The fact that it’s faster is not a useful differential, though. Plus, in
some situations, the speed difference is marginal verging on irrelevant, depending on
the browser and what you’re trying to select. Using the children() method is especially
useful when you’re dealing with jQuery objects stored under variables. For example:

var anchors = jQuery('a');

// Getting all direct children of all anchor elements
// can be achieved in three ways:

// #1
anchors.children();

// #2
jQuery('> *', anchors);

// #3
anchors.find('> *');

In fact, there are even more ways of achieving it! In this situation, the first method is
the fastest. As stated earlier, you can pass a selector expression to the children() meth-
od to filter the results:

jQuery('#content').children('p');

Only paragraph elements that are direct children of #content will be returned.

2.2 Selecting Specific Siblings
Problem
You need to select only a specific set of siblings of a particular element.

Solution
If you’re looking to select the adjacent sibling of a particular element, then you can use
the adjacent sibling combinator (+). Similar to the child (>) combinator, the sibling
combinator expects a selector expression on each side. The righthand expression is the

2.2 Selecting Specific Siblings | 37

subject of the selector, and the lefthand expression is the sibling you want to match.
Here’s some example HTML markup:

<div id="content">
 <h1>Main title</h1>
 <h2>Section title</h2>
 <p>Some content...</p>
 <h2>Section title</h2>
 <p>More content...</p>
</div>

If you want to select only <h2> elements that immediately follow <h1> elements, you
can use the following selector:

jQuery('h1 + h2');
 // Selects ALL H2 elements that are adjacent siblings of H1 elements

In this example, only one <h2> element will be selected (the first one). The second one
is not selected because, while it is a sibling, it is not an adjacent sibling of the <h1>
element.

If, on the other hand, you want to select and filter all siblings of an element, adjacent
or not, then you can use jQuery’s siblings() method to target them, and you can pass
an optional selector expression to filter the selection:

jQuery('h1').siblings('h2,h3,p');
 // Selects all H2, H3, and P elements that are siblings of H1 elements.

Sometimes you’ll want to target siblings dependent on their position relative to other
elements; for example, here’s some typical HTML markup:

 First item
 <li class="selected">Second item
 Third item
 Fourth item
 Fifth item

To select all list items beyond the second (after li.selected), you could use the fol-
lowing method:

jQuery('li.selected').nextAll('li');

The nextAll() method, just like siblings(), accepts a selector expression to filter the
selection before it’s returned. If you don’t pass a selector, then nextAll() will return all
siblings of the subject element that exist after the subject element, although not
before it.

With the preceding example, you could also use another CSS combinator to select all
list items beyond the second. The general sibling combinator (~) was added in CSS3,
so you probably haven’t been able to use it in your actual style sheets yet, but fortunately
you can use it in jQuery without worrying about support, or lack thereof. It works in
exactly the same fashion as the adjacent sibling combinator (+) except that it selects

38 | Chapter 2: Selecting Elements with jQuery

all siblings that follow, not just the adjacent one. Using the previously specified markup,
you would select all list items after li.selected with the following selector:

jQuery('li.selected ~ li');

Discussion
The adjacent sibling combinator can be conceptually tricky to use because it doesn’t
follow the top-down hierarchical approach of most other selector expressions. Still, it’s
worth knowing about and is certainly a useful way of selecting what you want with
minimal hassle.

The same functionality might be achieved without a selector, in the following way:

jQuery('h1').next('h2');

The next() method can make a nice alternative to the selector syntax, especially in
a programmatic setting when you’re dealing with jQuery objects as variables, for
example:

var topHeaders = jQuery('h1');
topHeaders.next('h2').css('margin','0');

2.3 Selecting Elements by Index Order
Problem
You need to select elements based on their order among other elements.

Solution
Depending on what you want to do, you have the following filters at your disposal.
These may look like CSS pseudoclasses, but in jQuery they’re called filters:

:first
Matches the first selected element

:last
Matches the last selected element

:even
Matches even elements (zero-indexed)

:odd
Matches odd elements (zero-indexed)

:eq(n)
Matches a single element by its index (n)

:lt(n)
Matches all elements with an index below n

2.3 Selecting Elements by Index Order | 39

:gt(n)
Matches all elements with an index above n

Assuming the following HTML markup:

 First item
 Second item
 Third item
 Fourth item

the first item in the list could be selected in a number of different ways:

jQuery('ol li:first');
jQuery('ol li:eq(0)');
jQuery('ol li:lt(1)');

Notice that both the eq() and lt() filters accept a number; since it’s zero-indexed, the
first item is 0, the second is 1, etc.

A common requirement is to have alternating styles on table rows; this can be achieved
with the :even and :odd filters:

<table>
 <tr><td>0</td><td>even</td></tr>
 <tr><td>1</td><td>odd</td></tr>
 <tr><td>2</td><td>even</td></tr>
 <tr><td>3</td><td>odd</td></tr>
 <tr><td>4</td><td>even</td></tr>
</table>

You can apply a different class dependent on the index of each table row:

jQuery('tr:even').addClass('even');

You’d have to specify the corresponding class (even) in your CSS style sheet:

table tr.even {
 background: #CCC;
}

This code would produce the effect shown in Figure 2-1.

Figure 2-1. Table with even rows darkened

40 | Chapter 2: Selecting Elements with jQuery

Discussion
As mentioned, an element’s index is zero-based, so if an element is the first one, then
its index is zero. Apart from that fact, using the preceding filters is very simple. Another
thing to note is that these filters require a collection to match against; the index can be
determined only if an initial collection is specified. So, this selector wouldn’t work:

jQuery(':even');

Actually, this selector does work, but only because jQuery does some
corrective postprocessing of your selector behind the scenes. If no initial
collection is specified, then jQuery will assume you meant all elements
within the document. So, the selector would actually work, since it’s
effectively identical to this: jQuery('*:even').

An initial collection is required on the lefthand side of the filter, i.e., something to apply
the filter to. The collection can be within an already instantiated jQuery object, as
shown here:

jQuery('ul li').filter(':first');

The filter method is being run on an already instantiated jQuery object (containing the
list items).

2.4 Selecting Elements That Are Currently Animating
Problem
You need to select elements based on whether they’re animating.

Solution
jQuery offers a convenient filter for this very purpose. The :animated filter will match
only elements that are currently animating:

jQuery('div:animated');

This selector would select all <div> elements currently animating. Effectively, jQuery
is selecting all elements that have a nonempty animation queue.

Discussion
This filter is especially useful when you need to apply a blanket function to all elements
that are not currently animated. For example, to begin animating all <div> elements
that are not already animating, it’s as simple as this:

jQuery('div:not(div:animated)').animate({height:100});

2.4 Selecting Elements That Are Currently Animating | 41

Sometimes you might want to check whether an element is animating. This can be done
with jQuery’s useful is() method:

var myElem = jQuery('#elem');
if(myElem.is(':animated')) {
 // Do something.
}

2.5 Selecting Elements Based on What They Contain
Problem
You need to select an element based on what it contains.

Solution
There are normally only two things you would want to query in this respect: the text
contents and the element contents (other elements). For the former, you can use
the :contains() filter:

<!-- HTML -->
Hello Bob!

// Select all SPANs with 'Bob' in:
jQuery('span:contains("Bob")');

Note that it’s case sensitive, so this selector wouldn’t match anything if we searched
for bob (with a lowercase b). Also, quotes are not required in all situations, but it’s a
good practice just in case you encounter a situation where they are required (e.g., when
you want to use parentheses).

To test for nested elements, you can use the :has() filter. You can pass any valid selector
to this filter:

jQuery('div:has(p a)');

This selector would match all <div> elements that encapsulate <a> elements (anchors)
within <p> elements (paragraphs).

Discussion
The :contains() filter might not fit your requirements. You may need more control
over what text to allow and what to disallow. If you need that control, I suggest using
a regular expression and testing against the text of the element, like so:

jQuery('p').filter(function(){
 return /(^|\s)(apple|orange|lemon)(\s|$)/.test(jQuery(this).text());
});

This would select all paragraphs containing the word apple, orange, or lemon. To read
more about jQuery’s filter() method, have a look at Recipe 2.10.

42 | Chapter 2: Selecting Elements with jQuery

2.6 Selecting Elements by What They Don’t Match
Problem
You need to select a number of elements that don’t match a specific selector.

Solution
For this, jQuery gives us the :not filter, which you can use in the following way:

jQuery('div:not(#content)'); // Select all DIV elements except #content

This filter will remove any elements from the current collection that are matched by
the passed selector. The selector can be as complex as you like; it doesn’t have to be a
simple expression, e.g.:

jQuery('a:not(div.important a, a.nav)');
// Selects anchors that do not reside within 'div.important' or have the class 'nav'

Passing complex selectors to the :not filter is possible only in jQuery
version 1.3 and beyond. In versions previous to that, only simple selector
expressions were acceptable.

Discussion
In addition to the mentioned :not filter, jQuery also supplies a method with very similar
functionality. This method accepts both selectors and DOM collections/nodes. Here’s
an example:

var $anchors = jQuery('a');
$anchors.click(function(){
 $anchors.not(this).addClass('not-clicked');
});

According to this code, when an anchor is clicked, all anchors apart from that one will
have the class not-clicked added. The this keyword refers to the clicked element.

The not() method also accepts selectors:

$('#nav a').not('a.active');

This code selects all anchors residing within #nav that do not have a class of active.

2.7 Selecting Elements Based on Their Visibility
Problem
You need to select an element based on whether it’s visible.

2.7 Selecting Elements Based on Their Visibility | 43

Solution
You can use either the :hidden or :visible filter as necessary:

jQuery('div:hidden');

Here are some other examples of usage:

if (jQuery('#elem').is(':hidden')) {
 // Do something conditionally
}
jQuery('p:visible').hide(); // Hiding only elements that are currently visible

Discussion

Since jQuery 1.3.2, these filters have dramatically changed. Before 1.3.2
both filters would respond like you would expect for the CSS
visibility property, but that is no longer taken into account. Instead,
jQuery tests for the height and width of the element in question (relative
to its offsetParent). If either of these dimensions is zero, then the ele-
ment is considered hidden; otherwise, it’s considered visible.

If you need more control, you can always use jQuery’s filter() method, which allows
you to test the element in any way you want. For example, you may want to select all
elements that are set to display:none but not those that are set to visibility:hidden.
Using the :hidden filter won’t work because it matches elements with either of those
characteristics (< v1.3.2) or doesn’t take either property into consideration at all
(>= v1.3.2):

jQuery('*').filter(function(){
 return jQuery(this).css('display') === 'none'
 && jQuery(this).css('visibility') !== 'hidden';
});

The preceding code should leave you with a collection of elements that are set to
display:none but not visibility:hidden. Note that, usually, such a selection won’t be
necessary—the :hidden filter is perfectly suitable in most situations.

2.8 Selecting Elements Based on Attributes
Problem
You need to select elements based on attributes and those attributes’ values.

Solution
Use an attribute selector to match specific attributes and corresponding values:

jQuery('a[href="http://google.com"]');

44 | Chapter 2: Selecting Elements with jQuery

The preceding selector would select all anchor elements with an href attribute equal
to the value specified (http://google.com).

There are a number of ways you can make use of the attribute selector:

[attr]
Matches elements that have the specified attribute

[attr=val]
Matches elements that have the specified attribute with a certain value

[attr!=val]
Matches elements that don’t have the specified attribute or value

[attr^=val]
Matches elements with the specified attribute and that start with a certain value

[attr$=val]
Matches elements that have the specified attribute and that end with a certain value

[attr~=val]
Matches elements that contain the specified value with spaces, on either side (i.e.,
car matches car but not cart)

Prior to jQuery 1.2 you had to use XPath syntax (i.e., putting an @ sign
before an attribute name). This is now deprecated.

You can also combine multiple attribute selectors:

// Select all elements with a TITLE and HREF:
jQuery('*[title][href]');

Discussion
As always, for special requirements it may be more suitable to use the filter() method
to more specifically outline what you’re looking for:

jQuery('a').filter(function(){
 return (new RegExp('http:\/\/(?!' + location.hostname + ')')).test(this.href);
});

In this filter, a regular expression is being used to test the href attribute of each anchor.
It selects all external links within any page.

The attribute selector is especially useful for selecting elements based on slightly varying
attributes. For example, if we had the following HTML:

<div id="content-sec-1">...</div>
<div id="content-sec-2">...</div>
<div id="content-sec-3">...</div>
<div id="content-sec-4">...</div>

2.8 Selecting Elements Based on Attributes | 45

we could use the following selector to match all of the <div> elements:

jQuery('div[id^="content-sec-"]');

2.9 Selecting Form Elements by Type
Problem
You need to select form elements based on their types (hidden, text, checkbox, etc.).

Solution
jQuery gives us a bunch of useful filters for this very purpose, as shown in Table 2-1.

Table 2-1. jQuery form filters

jQuery selector syntax Selects what?

:text <input type="text" />

:password <input type="password" />

:radio <input type="radio" />

:checkbox <input type="checkbox" />

:submit <input type="submit" />

:image <input type="image" />

:reset <input type="reset" />

:button <input type="button" />

:file <input type="file" />

:hidden <input type="hidden" />

So, as an example, if you needed to select all text inputs, you would simply do this:
jQuery(':text');

There is also an :input filter that selects all input, textarea, button, and select
elements.

Discussion
Note that the :hidden filter, as discussed earlier, does not test for the type hidden; it
works by checking the computed height of the element. This works with input elements
of the type hidden because they, like other hidden elements, have an offsetHeight
of zero.

As with all selectors, you can mix and match as desired:

jQuery(':input:not(:hidden)');
 // Selects all input elements except those that are hidden.

46 | Chapter 2: Selecting Elements with jQuery

These filters can also be used with regular CSS syntax. For example, selecting all text
input elements plus all <textarea> elements can be done in the following way:

jQuery(':text, textarea');

2.10 Selecting an Element with Specific Characteristics
Problem
You need to select an element based not only on its relationship to other elements or
simple attribute values but also on varying characteristics such as programmatic states
not expressible as selector expressions.

Solution
If you’re looking for an element with very specific characteristics, selector expressions
may not be the best tool. Using jQuery’s DOM filtering method (filter()), you can
select elements based on anything expressible within a function.

The filter method in jQuery allows you to pass either a string (i.e., a selector expression)
or a function. If you pass a function, then its return value will define whether certain
elements are selected. The function you pass is run against every element in the current
selection; every time the function returns false, the corresponding element is removed
from the collection, and every time you return true, the corresponding element is not
affected (i.e., it remains in the collection):

jQuery('*').filter(function(){
 return !!jQuery(this).css('backgroundImage');
});

The preceding code selects all elements with a background image.

The initial collection is of all elements (*); then the filter() method is called with a
function. This function will return true when a backgroundImage is specified for the
element in question. The !! that you see is a quick way of converting any type in Java-
Script to its Boolean expression. Things that evaluate to false include an empty string,
the number zero, the value undefined, the null type, and, of course, the false Boolean
itself. If any of these things are returned from querying the backgroundImage, the func-
tion will return false, thus removing any elements without background images from
the collection. Most of what I just said is not unique to jQuery; it’s just JavaScript
fundamentals.

In fact, the !! is not necessary because jQuery evaluates the return value into a Boolean
itself, but keeping it there is still a good idea; anyone looking at your code can be
absolutely sure of what you intended (it aids readability).

2.10 Selecting an Element with Specific Characteristics | 47

Within the function you pass to filter(), you can refer to the current element via the
this keyword. To make it into a jQuery object (so you can access and perform jQuery
methods), simply wrap it in the jQuery function:

this; // Regular element object
jQuery(this); // jQuery object

Here are some other filtering examples to spark your imagination:

// Select all DIV elements with a width between 100px and 200px:
jQuery('div').filter(function(){
 var width = jQuery(this).width();
 return width > 100 && width < 200;
});

// Select all images with a common image extension:
jQuery('img').filter(function(){
 return /\.(jpe?g|png|bmp|gif)(\?.+)?$/.test(this.src);
});

// Select all elements that have either 10 or 20 children:
jQuery('*').filter(function(){
 var children = jQuery(this).children().length;
 return children === 10 || children === 20;
});

Discussion
There will always be several different ways to do something; this is no less true when
selecting elements with jQuery. The key differential is usually going to be speed; some
ways are fast, others are slow. When you use a complicated selector, you should be
thinking about how much processing jQuery has to do in the background. A longer
and more complex selector will take longer to return results. jQuery’s native methods
can sometimes be much faster than using a single selector, plus there’s the added benefit
of readability. Compare these two techniques:

jQuery('div a:not([href^=http://]), p a:not([href^=http://])');

jQuery('div, p').find('a').not('[href^=http://]');

The second technique is shorter and much more readable than the first. Testing in
Firefox (v3) and Safari (v4) reveals that it’s also faster than the first technique.

2.11 Using the Context Parameter
Problem
You’ve heard of the context parameter but have yet to encounter a situation where it’s
useful.

48 | Chapter 2: Selecting Elements with jQuery

Solution
As well as passing a selector expression to jQuery() or $(), you can pass a second
argument that specifies the context. The context is where jQuery will search for the
elements matched by your selector expression.

The context parameter is probably one of the most underused of jQuery’s features. The
way to use it is incredibly simple: pass a selector expression, a jQuery object, a DOM
collection, or a DOM node to the context argument, and jQuery will search only for
elements within that context.

Here’s an example: you want to select all input fields within a form before it’s
submitted:

jQuery('form').bind('submit', function(){
 var allInputs = jQuery('input', this);
 // Now you would do something with 'allInputs'
});

Notice that this was passed as the second argument; within the handler just shown,
this refers to the form element. Since it’s set as the context, jQuery will only return
input elements within that form. If we didn’t include that second argument, then all of
the document’s input elements would be selected—not what we want.

As mentioned, you can also pass a regular selector as the context:

jQuery('p', '#content');

The preceding code returns exactly the same collection as the following selector:

jQuery('#content p');

Specifying a context can aid in readability and speed. It’s a useful feature to know about!

Discussion
The default context used by jQuery is document, i.e., the topmost item in the DOM
hierarchy. Only specify a context if it’s different from this default. Using a context can
be expressed in the following way:

jQuery(context).find(selector);

In fact, this is exactly what jQuery does behind the scenes.

Considering this, if you already have a reference to the context, then you should pass
that instead of a selector—there’s no point in making jQuery go through the selection
process again.

2.11 Using the Context Parameter | 49

2.12 Creating a Custom Filter Selector
Problem
You need a reusable filter to target specific elements based on their characteristics. You
want something that is succinct and can be included within your selector expressions.

Solution
You can extend jQuery’s selector expressions under the jQuery.expr[':'] object; this
is an alias for Sizzle.selectors.filters. Each new filter expression is defined as a
property of this object, like so:

jQuery.expr[':'].newFilter = function(elem, index, match){
 return true; // Return true/false like you would on the filter() method
};

The function will be run on all elements in the current collection and needs to return
true (to keep the element in the collection) or false (to remove the element from the
collection). Three bits of information are passed to this function: the element in ques-
tion, the index of this element among the entire collection, and a match array returned
from a regular expression match that contains important information for the more
complex expressions.

For example, you might want to target all elements that have a certain property. This
filter matches all elements that are displayed inline:

jQuery.expr[':'].inline = function(elem) {
 return jQuery(elem).css('display') === 'inline';
};

Now that we have created a custom selector, we can use it in any selector expression:

// E.g. #1
jQuery('div a:inline').css('color', 'red');
// E.g. #2
jQuery('span').filter(':not(:inline)').css('color', 'blue')

jQuery’s custom selectors (:radio, :hidden, etc.) are created in this way.

Discussion
As mentioned, the third parameter passed to your filter function is an array returned
from a regular expression match that jQuery performs on the selector string. This match
is especially useful if you want to create a filter expression that accepts parameters. Let’s
say that we want to create a selector that queries for data held by jQuery:

jQuery('span').data('something', 123);

// We want to be able to do this:
jQuery('*:data(something,123)');

50 | Chapter 2: Selecting Elements with jQuery

The purpose of the selector would be to select all elements that have had data attached
to them via jQuery’s data() method—it specifically targets elements with a datakey of
something, equal to the number 123.

The proposed filter (:data) could be created as follows:

jQuery.expr[':'].data = function(elem, index, m) {

 // Remove ":data(" and the trailing ")" from
 // the match, as these parts aren't needed:
 m[0] = m[0].replace(/:data\(|\)$/g, '');

 var regex = new RegExp('([\'"]?)((?:\\\\\\1|.)+?)\\1(,|$)', 'g'),
 // Retrieve data key:
 key = regex.exec(m[0])[2],
 // Retrieve data value to test against:
 val = regex.exec(m[0]);

 if (val) {
 val = val[2];
 }

 // If a value was passed then we test for it, otherwise
 // we test that the value evaluates to true:
 return val ? jQuery(elem).data(key) == val : !!jQuery(elem).data(key);

};

The reason for such a complex regular expression is that we want to make it as flexible
as possible. The new selector can be used in a number of different ways:

// As we originally mused (above):
jQuery('div:data("something",123)');

// Check if 'something' is a "truthy" value
jQuery('div:data(something)');

// With or without (inner) quotes:
jQuery('div:data(something, "something else")');

Now we have a totally new way of querying data held by jQuery on an element.

If you ever want to add more than one new selector at the same time, it’s best to use
jQuery’s extend() method:

jQuery.extend(jQuery.expr[':'], {
 newFilter1 : function(elem, index, match){
 // Return true or false.
 },
 newFilter2 : function(elem, index, match){
 // Return true or false.
 },
 newFilter3 : function(elem, index, match){
 // Return true or false.
 }
});

2.12 Creating a Custom Filter Selector | 51

CHAPTER 3

Beyond the Basics

Ralph Whitbeck

3.0 Introduction
jQuery is a very lightweight library that is capable of helping you do the simple selec-
tions of DOM elements on your page. You saw these simple uses in Chapter 1. In this
chapter, we’ll explore how jQuery can be used to manipulate, traverse, and extend
jQuery to infinite possibilities. As lightweight as jQuery is, it was built to be robust and
expandable.

3.1 Looping Through a Set of Selected Results
Problem
You need to create a list from your selected set of DOM elements, but performing any
action on the selected set is done on the set as a whole. To be able to create a list with
each individual element, you’ll need to perform a separate action on each element of
the selected set.

Solution
Let’s say you wanted to make a list of every link within a certain DOM element (perhaps
it’s a site with a lot of user-provided content, and you wanted to quickly glance at the
submitted links being provided by users). We would first create our jQuery selection,
$("div#post a[href]"), which will select all links with an href attribute within the
<div> with the id of post. Then we want to loop through each matched element and
append it to an array. See the following code example:

var urls = [];
 $("div#post a[href]").each(function(i) {
 urls[i] = $(this).attr('href');
});

53

alert(urls.join(","));

We were able to make an array because we iterated through each element in the jQuery
object by using the $().each(); method. We are able to access the individual elements
and execute jQuery methods against those elements because we wrapped the this
variable in a jQuery wrapper, $(), thus making it a jQuery object.

Discussion
jQuery provides a core method that you can use to loop through your set of selected
DOM elements. $().each() is jQuery’s for loop, which will loop through and provide
a separate function scope for each element in the set. $().each(); will iterate exclusively
through jQuery objects.

$().each(); is not the same as the jQuery utility method
jQuery.each(object, callback);. The jQuery.each method is a more
generalized iterator method that will iterate through both objects and
arrays. See jQuery’s online documentation for more information on
jQuery.each() at http://docs.jquery.com/Utilities/jQuery.each.

In each iteration, we are getting the href attribute of the current element from the main
selection. We are able to get the current DOM element by using the this keyword. We
then wrap it in the jQuery object, $(this), so that we can perform jQuery methods/
actions against it—in our case, pulling the href attribute from the DOM element. The
last action is to assign the href attribute to a global array, urls.

Just so we can see what we have, the array URL is joined together with a , and displayed
to the user in an alert box. We could also have added the list to an unordered list DOM
element for display to the user. More practically, we might want to format the list of
URLs into JSON format and send it to the server for processing into a database.

Let’s look at another example using $().each();. This example is probably the most
obvious use of $().each();. Let’s say we have an unordered list of names, and we want
each name to stand out. One way to accomplish this is to set an alternate background
color for every other list item:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 1 - Looping through a set of selected results</title>
 <style type="text/css">
 .even { background-color: #ffffff; }
 .odd { background-color: #cccccc; }
 </style>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"
type="text/javascript"></script>

54 | Chapter 3: Beyond the Basics

http://docs.jquery.com/Utilities/jQuery.each

 <script type="text/javascript">
 (function($){
 $(document).ready(function() {
 $("ul > li").each(function(i) {
 if (i % 2 == 1)
 {
 $(this).addClass("odd");
 }
 else
 {
 $(this).addClass("even");
 }
 });
 });
 })(jQuery);
 </script>
</head>
<body>
 <h2>Family Members</h2>

 Ralph
 Hope
 Brandon
 Jordan
 Ralphie

</body>
</html>

Figure 3-1 shows the code output.

Figure 3-1. Code output

As we iterate through each element, we are testing whether the current index,
which is passed in as a single argument to the function when executed, modded by 2
is equal to 1. Based on that condition, we either set one CSS class (.odd) or another CSS
class (.even).

3.1 Looping Through a Set of Selected Results | 55

Even though this may be the most obvious way to use $().each(), it
isn’t the most efficient way to handle making alternating background
colors. We could have accomplished this with one line:

$("ul > li:odd").addClass("odd");

All we needed to do was set all the elements to the class .even in
the CSS so that we could override the odd elements with the .odd
class with jQuery.

The basic function of $.each(); is to take the matched set and iterate through each
element via reference of the index, perform some action, and iterate to the next element
in the matched set until there are no more elements left.

3.2 Reducing the Selection Set to a Specified Item
Problem
A jQuery selector is broad and selects all elements on the page based on your query.
The need may rise when you need to select a single item, based on its position, but
there isn’t an easy way to select that item without editing the code.

Solution
After you make your selection with jQuery, you can chain the .eq() method and pass
in the index of the selection you want to work with.

The selection index is zero-based, so the first item in the selection would
be $().eq(0); where 0 represents the first item in the selection. $
().eq(4); represents the fifth item.

Let’s use the end of the season standings for the National Hockey League (NHL) con-
ferences as an example of how we can show which teams made the playoffs and which
didn’t. What we need to do is list all the teams in each conference in the order they
finished the season in. Since the top eight teams in each conference make it to the playoff
round, we just need to figure out the eighth entry in each list and draw a line:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 2 - Reducing the selection set to specified item</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>

56 | Chapter 3: Beyond the Basics

 <script type="text/javascript">
 (function($){
 $(document).ready(function(){
 $("ol#east > li").eq(7).css("border-bottom", "1px solid #000000");
 $("ol#west > li").eq(7).css("border-bottom", "1px solid #000000");
 });
 })(jQuery);
 </script>
</head>
<body>
 <h2>Eastern Conference</h2>
 <ol id="east">
 Boston Bruins
 Washington Capitals
 New Jersey Devils
 Pittsburgh Penguins
 Philadelphia Flyers
 Carolina Hurricanes
 New York Rangers
 Montreal Canadians
 Florida Panthers
 Buffalo Sabres
 Ottawa Senators
 Toronto Maple Leafs
 Atlanta Thrashers
 Tampa Bay Lightning
 New York Islanders

 <h2>Western Conference</h2>
 <ol id="west">
 San Jose Sharks
 Detroit Red Wings
 Vancouver Canucks
 Chicago Blackhawks
 Calgary Flames
 St. Louis Blues
 Columbus Blue Jackets
 Anaheim Ducks
 Minnesota Wild
 Nashville Predators
 Edmonton Oilers
 Dallas Stars
 Phoenix Coyotes
 Los Angeles Kings
 Colorado Avalanche

</body>
</html>

Figure 3-2 shows the code output.

3.2 Reducing the Selection Set to a Specified Item | 57

Figure 3-2. Code output

As you can see, we just use an ordered list to list the teams in the order they placed,
then we use jQuery to add a bottom border to the eighth item in each list. We need to
add an ID to each ordered list so that we can specify each list in a separate query. If we
were to do $("li").eq(7);, it would select only from the first list because the query
would have counted all the elements on the page together.

58 | Chapter 3: Beyond the Basics

Discussion
The .eq() method is used to take a selection set and reduce it to a single item from that
set. The argument is the index that you want to reduce your selection to. The index
starts at 0 and goes to length −1. If the argument is an invalid index, the method will
return an empty set of elements instead of null.

The .eq() method is similar to using the $(":eq()"); right in your selection, but
the .eq() method allows you to chain to the selection and fine-tune further. For
example:

$("li").css("background-color","#CCCCCC").eq(0).css("background-color","#ff0000");

This will change the background color of all elements and then select the first one
and give it a different color to signify that it is perhaps a header item.

3.3 Convert a Selected jQuery Object into a Raw DOM Object
Problem
Selecting elements on a page with jQuery returns a set as a jQuery object and not as a
raw DOM object. Because it’s a jQuery object, you can only run jQuery methods against
the selected set. To be able to run DOM methods and properties against the selected
set, the set needs to be converted to a raw DOM object.

Solution
jQuery provides a core method get(), which will convert all matched jQuery objects
back into an array of DOM objects. Additionally, you can pass an index value in as an
argument of get(), which will return the element at the index of the matched set as a
DOM object, $.get(1);. Now, even though you can get at a single element’s DOM
object via $.get(index), it is there for historical reasons; the “best practices” way is to
use the [] notation, $("div")[1];.

We are discussing the core .get() method, which transforms a jQuery
object to a DOM array. We are not discussing the Ajax get method,
which will load a remote page using an HTTP GET request.

Because get() returns an array, you can traverse the array to get at each DOM element.
Once it’s a DOM element, you can then call traditional DOM properties and methods
against it. Let’s explore a simple example of pulling the innerHTML of an element:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>

3.3 Convert a Selected jQuery Object into a Raw DOM Object | 59

 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 3 - Converting a selected jQuery object into a
raw DOM object</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">
 (function($){
 $(document).ready(function(){
 var inner = $("div")[0].innerHTML;
 alert(inner);
 });
 })(jQuery);
 </script>
</head>
<body>
 <div>
 <p>
 jQuery, the write less, do more JavaScript library. Saving the day
for web developers since 2006.
 </p>
 </div>
</body>
</html>

Figure 3-3 shows the output.

Figure 3-3. Code output

We start by selecting all the <div> elements on the page and calling [0]. We pass in the
index of the selection we want to work with; since there is only one <div> on the page,
we can pass in index 0. Finally, we call a property, in this case innerHTML, to retrieve the
raw DOM element.

60 | Chapter 3: Beyond the Basics

Discussion
The core get() method can be very useful, as there are some non-JavaScript methods
that we can utilize for our advantage. Let’s say we have a list and we need to show that
list in reverse order. Since get() returns an array, we can use native array methods to
reverse sort the list and then redisplay the list:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 3 - Converting a selected jQuery object into a raw DOM
object</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">
 <!--
 (function($){
 $(document).ready(function(){
 var lis = $("ol li").get().reverse();
 $("ol").empty();
 $.each(lis, function(i){
 $("ol").append("" + lis[i].innerHTML + "");
 });
 });
 })(jQuery);
 //-->
 </script>
</head>
<body>
 <h2>New York Yankees - Batting Line-up</h2>

 Jeter
 Damon
 Teixeira
 Posada
 Swisher
 Cano
 Cabrera
 Molina
 Ransom

</body>
</html>

Figure 3-4 shows the output.

3.3 Convert a Selected jQuery Object into a Raw DOM Object | 61

Figure 3-4. Code output

3.4 Getting the Index of an Item in a Selection
Problem
When binding an event for a wide range of selected elements on a page, you need to
know exactly which item was clicked from the selected set to “personalize” the action
of the bound event.

Solution
When we click an item, we can use the core method index() to search through a
selection to see what index the item is at:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 4 - Getting the index of an item in a selection</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">
 <!--
 (function($){
 $(document).ready(function(){
 $("div").click(function() {
 alert("You clicked on div with an index of " +
$("div").index(this));

62 | Chapter 3: Beyond the Basics

 });
 });
 })(jQuery);
 //-->
 </script>
</head>
<body>
 <div>click me</div>
 <div class="test">test</div>
 <div>click me</div>
</body>
</html>

Figure 3-5 shows the output.

Figure 3-5. Code output

We start by binding all <div> elements to a click event. Then when a <div> is clicked,
we can figure out which <div> was clicked by searching for the item in the same selec-
tion: $("div").index(this);, where this is the <div> that was clicked.

3.4 Getting the Index of an Item in a Selection | 63

Discussion
The core method index() allows you to get the index of the DOM element you are
looking for from a jQuery set. As of jQuery 1.2.6, you can also pass in the index of a
jQuery collection to search for. The method will return the index of the first occurrence
it finds:

var test = $("div.test");

$("div").each(function(i){
 if ($(this).index(test) >= 0)
 {
 //do something
 }
 else
 {
 //do something else
 }
});

We’ll see whether the <div> in the loop matches the collection we saved in the variable
test, and if so, it will perform a custom action on the matched collection.

If the index method cannot find the subject that was passed in, it will
return −1.

3.5 Making a Unique Array of Values from an Existing Array
Problem
You have an ordered list on your page. You select all the elements of that list using
jQuery; now you need to transform that list into another list.

Solution
Let’s say we have a list of people in an ordered list. We would like to display the first
three people from that ordered list as a sentence:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 5 - Making a unique array of values from an existing
array</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">

64 | Chapter 3: Beyond the Basics

 <!--
 (function($){
 $(document).ready(function(){
 var arr = $.map($("LI"), function(item, index){
 while (index < 3)
 {
 return $(item).html();
 }
 return null;
 });

 $(document.body).append("The first three authors are: " +
arr.join(", ") + "");
 });
 })(jQuery);
 //-->
 </script>
</head>
<body>
 <h1>jQuery Cookbook Authors</h1>

 John Resig
 Cody Lindley
 James Padolsey
 Ralph Whitbeck
 Jonathan Sharp
 Michael Geary
 Scott González
 Rebecca Murphey
 Remy Sharp
 Ariel Flesler
 Brian Cherne
 Jörn Zaefferer
 Mike Hostetler
 Nathan Smith
 Richard D. Worth
 Maggie Wachs
 Scott Jehl
 Todd Parker
 Patty Toland
 Rob Burns

</body>
</html>

Figure 3-6 shows the output.

We start by making an array of the elements from the ordered list. We will select
all elements on the page by using a jQuery selector and pass that in as an argument
of the jQuery utility method $.map(), which will take an existing array and “map” it
into another array. The second argument is the function that will iterate through the
array, perform translations, and return a new value to be stored into a new array.

3.5 Making a Unique Array of Values from an Existing Array | 65

In the preceding example, we iterate through the array we made, return only the
html() values of the first three list elements, and map these values into a new array. We
then take that array and use the join method to make a single string out of the array
and inject it into the end of the document.

Discussion
In the solution, we are using the jQuery utility method $.map(), which will transform
an existing array into another array of items. $.map() takes two arguments, an array
and a callback function:

$.map([1,2,3], function(n,i) { return n+i;});

//Output: [1,3,5]

$.map() will iterate through each item of the original array and pass in the item to be
translated and the index of the current location within the array. The method is ex-
pecting a value to be returned. The returned value will be inserted into the new array.

If the null value is returned, no value will be saved into the new array.
Returning null basically removes the item from the new array.

Figure 3-6. Code output

66 | Chapter 3: Beyond the Basics

3.6 Performing an Action on a Subset of the Selected Set
Problem
You need to perform an action on a set of tags, but there is no way to isolate these tags
from all the other tags on the page in a jQuery selection set.

Solution
We can use the slice() method to filter the selection set to a subset. We pass it a starting
index value and an ending index value, then we can chain our action at the end:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 6 - Performing an action on a subset of the selected
set</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">
 <!--
 (function($){
 $(document).ready(function(){

 $("p").slice(1,3).wrap("<i></i>");
 });
 })(jQuery);
 //-->
 </script>
</head>
<body>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin eget nibh ut
tortor egestas pharetra. Nullam a hendrerit urna. Aenean augue arcu, vestibulum eget
faucibus nec, auctor vel velit. Fusce eget velit non nunc auctor rutrum id et ante.
Donec nec malesuada arcu. Suspendisse eu nibh nulla, congue aliquet metus. Integer
porta dignissim magna, eu facilisis magna luctus ac. Aliquam convallis condimentum
purus, at lacinia nisi semper volutpat. Nulla non risus justo. In ac elit vitae elit
posuere adipiscing.
 </p>
 <p>
 Aliquam gravida metus sit amet orci facilisis eu ultricies risus iaculis. Nunc
tempus tristique magna, molestie adipiscing nibh bibendum vel. Donec sed nisi luctus
sapien scelerisque pretium id eu augue. Mauris ipsum arcu, feugiat non tempor
tincidunt, tincidunt sit amet turpis. Vestibulum scelerisque rutrum luctus. Curabitur
eu ornare nisl. Cras in sem ut eros consequat fringilla nec vitae felis. Nulla
facilisi. Mauris suscipit feugiat odio, a condimentum felis luctus in. Nulla interdum
dictum risus, accumsan dignissim tortor ultricies in. Duis justo mauris, posuere vel
convallis ut, auctor non libero. Ut a diam magna, ut egestas dolor. Nulla convallis,
orci in sodales blandit, lorem augue feugiat nulla, vitae dapibus mi ligula quis

3.6 Performing an Action on a Subset of the Selected Set | 67

ligula. Aenean mattis pulvinar est quis bibendum.
 </p>
 <p>
 Donec posuere pulvinar ligula, nec sagittis lacus pharetra ac. Cras nec
tortor mi. Pellentesque et magna vel erat consequat commodo a id nunc. Donec velit
elit, vulputate nec tristique vitae, scelerisque ac sem. Proin blandit quam ut magna
ultrices porttitor. Fusce rhoncus faucibus tincidunt. Cras ac erat lacus, dictum
elementum urna. Nulla facilisi. Praesent ac neque nulla, in rutrum ipsum. Aenean
imperdiet, turpis sit amet porttitor hendrerit, ante dui eleifend purus, eu fermentum
dolor enim et elit.
 </p>
 <p>
 Suspendisse facilisis molestie hendrerit. Aenean congue congue sapien, ac
luctus nulla rutrum vel. Fusce vitae dui urna. Fusce iaculis mattis justo sit amet
varius. Duis velit massa, varius in congue ut, tristique sit amet lorem. Curabitur
porta, mauris non pretium ultrices, justo elit tristique enim, et elementum tellus
enim sit amet felis. Sed sollicitudin rutrum libero sit amet malesuada. Duis vitae
gravida purus. Proin in nunc at ligula bibendum pharetra sit amet sit amet felis.
Integer ut justo at massa ullamcorper sagittis. Mauris blandit tortor lacus,
convallis iaculis libero. Etiam non pellentesque dolor. Fusce ac facilisis ipsum.
Suspendisse eget ornare ligula. Aliquam erat volutpat. Aliquam in porttitor purus.
 </p>
 <p>
 Suspendisse facilisis euismod purus in dictum. Vivamus ac neque ut sapien
fermentum placerat. Sed malesuada pellentesque tempor. Aenean cursus, metus a
lacinia scelerisque, nulla mi malesuada nisi, eget laoreet massa risus eu felis.
Vivamus imperdiet rutrum convallis. Proin porta, nunc a interdum facilisis, nunc dui
aliquet sapien, non consectetur ipsum nisi et felis. Nullam quis ligula nisi, sed
scelerisque arcu. Nam lorem arcu, mollis ac sodales eget, aliquet ac eros. Duis
hendrerit mi vitae odio convallis eget lobortis nibh sodales. Nunc ut nunc vitae
nibh scelerisque tempor at malesuada sapien. Nullam elementum rutrum odio nec aliquet.
 </p>
</body>
</html>

Figure 3-7 shows the output.

The preceding example selects the subset starting at index 1 and ending before index
3 and wraps an italics tag around the subselection.

Discussion
The jQuery method slice() takes a couple of options; the first is the starting index
position, and the second argument, which is optional, is the ending index position. So,
say you wanted all <P> tags except the first one; you could do $("p").slice(1), and it
would start the selection at the second item and select the rest that is in the jQuery
selection.

slice() also takes a negative number. If a negative number is given, it’ll count in from
the selection’s end. So, $("p").slice(−1); will select the last item in the selection. Ad-
ditionally, $("p").slice(1, −2); will start the selection at the second item and select
to the second-to-last item.

68 | Chapter 3: Beyond the Basics

3.7 Configuring jQuery Not to Conflict with Other Libraries
Problem
If jQuery is loaded on the same page as another JavaScript library, both libraries may
have implemented the $ variable, which results in only one of those methods working
correctly.

Figure 3-7. Code output

3.7 Configuring jQuery Not to Conflict with Other Libraries | 69

Solution
Let’s say you inherit a web page that you need to update, and the previous programmer
used another JavaScript library like Prototype, but you still want to use jQuery. This
will cause a conflict, and one of the two libraries will not work based on which library
is listed last in the page head.

If we just declare both jQuery and Prototype on the same page like so:

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/prototype/1.6.0.3/prototype.js"></script>
<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>

this will cause a JavaScript error: element.dispatchEvent is not a function in
prototype.js. Thankfully, jQuery provides a workaround with the jQuery.noCon
flict() method:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 7 - Configuring jQuery to free up a conflict with
another library</title>

 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/prototype/1.6.0.3/prototype.js"></script>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">
 <!--
 jQuery.noConflict();

 // Use jQuery via jQuery(...)
 jQuery(document).ready(function(){
 jQuery("div#jQuery").css("font-weight","bold");
 });

 // Use Prototype with $(...), etc.
 document.observe("dom:loaded", function() {
 $('prototype').setStyle({
 fontSize: '10px'
 });
 });
 //-->
 </script>

</head>
<body>
 <div id="jQuery">Hello, I am a jQuery div</div>
 <div id="prototype">Hello, I am a Prototype div</div>
</body>
</html>

70 | Chapter 3: Beyond the Basics

Figure 3-8 shows the output.

Figure 3-8. Code output

When you call jQuery.noConflict(), it gives control of the $ variable back to whomever
implemented it first. Once you free up the $ variable, you only will be able to access
jQuery with the jQuery variable. For example, when you used to use $("div p"), you
would now use jQuery("div p").

Discussion
The jQuery library and virtually all of its plugins are constrained by the jQuery name-
space. You shouldn’t get a conflict with the jQuery variable and any other library (i.e.,
Prototype, YUI, etc.). jQuery does however use $ as a shortcut for the jQuery object.
This shortcut definition is what conflicts with other libraries that also use the $ variable.
As we’ve seen in the solution, we can free jQuery of the $ shortcut and revert to using
the jQuery object.

There is another option. If you want to make sure jQuery won’t conflict with another
library but still have the benefit of a short name, you can call jQuery.noConflict() and
assign it to a variable:

 var j = jQuery.noConflict();

 j(document).ready(function(){
 j("div#jQuery").css("font-weight","bold");
 });

You can define your own short name by choosing the variable name you assign,
jQuery.noConflict().

Finally, another option is to encapsulate your jQuery code inside a closure:

 jQuery.noConflict();

 (function($){
 $("div#jQuery").css("font-weight","bold");
 })(jQuery);

By using a closure, you temporarily make the $ variable available to the jQuery object
while being run inside the function. Once the function ends, the $ variable will revert
to the library that had initial control.

3.7 Configuring jQuery Not to Conflict with Other Libraries | 71

If you use this technique, you will not be able to use other libraries’
methods within the encapsulated function that expect the $.

3.8 Adding Functionality with Plugins
Problem
The jQuery library is a small, slick, powerful JavaScript library, but it doesn’t come
preloaded with every piece of functionality that you may need.

Solution
jQuery was built with extensibility in mind. If the core jQuery library can’t do what
you want, chances are a jQuery plugin author has written a plugin that will handle your
need, probably in as little as one line of code.

To include a plugin on your page, all you need to do is download the plugin .js file,
include the jQuery library on the page, then immediately after, include your plugin on
the page. Then, in either another .js file or in a script block on the page, you’ll typically
need to call the plugin and provide any options that may be required.

Here is an example using the jQuery cycle plugin developed by Mike Alsup:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 8 - Adding Functionality with Plugins</title>
 <style type="text/css">
 .pics {
 height: 232px;
 width: 232px;
 padding: 0;
 margin: 0;
 }

 .pics img {
 padding: 15px;
 border: 1px solid #ccc;
 background-color: #eee;
 width: 200px;
 height: 200px;
 top: 0;
 left: 0
 }
 </style>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <!--Now include your plugin declarations after you've declared jQuery on the page-->

72 | Chapter 3: Beyond the Basics

http://jquery-cookbook.com/go/plugin-cycle

 <script type="text/javascript" src="scripts/2.8/jquery.cycle.all.min.js?
v2.60"></script>
 <script type="text/javascript">
 <!--
 (function($){
 $(document).ready(function(){
 $('.pics').cycle('fade');
 });
 })(jQuery);
 //-->
 </script>

</head>
<body>
 <div class="pics">

 </div>
</body>
</html>

Figure 3-9 shows the output.

Figure 3-9. Code output (one image fading into another)

With one line of code, we are able to make a slideshow effect that will show one image
at a time and then fade to the next image automatically. The cycle plugin is also ex-
tensible because it was written so developers can provide different options to have
different transition effects and layouts.

Discussion
jQuery has one of the largest communities of developers of any of the JavaScript libra-
ries. This large community contributes to a large base of plugins and tutorials that are

3.8 Adding Functionality with Plugins | 73

available on the Web. jQuery hosts a repository of plugins that have been written and
submitted to http://plugins.jquery.com by the authors. There are currently more than
1,600 plugins listed in the repository, and you can find plugins in many different cat-
egories. Plugin authors are invited to submit their plugins and to give a description, a
link to the plugin, and a link to the plugin’s documentation. The repository makes it
easy for developers to search for the specific functionality they want.

Chances are that, as a developer, you will eventually find a plugin that meets your
requirements. But on the off chance that a plugin doesn’t exist, creating a plugin your-
self is fairly straightforward. Here are some points to remember:

• Name your file jquery.[name of plugin].js, as in jquery.debug.js.

• All new methods are attached to the jQuery.fn object; all functions to the jQuery
object.

• Inside methods, this is a reference to the current jQuery object.

• Any methods or functions you attach must have a semicolon (;) at the end—
otherwise, the code will break when compressed.

• Your method must return the jQuery object, unless explicitly noted otherwise.

• You should use this.each to iterate over the current set of matched elements—it
produces clean and compatible code that way.

• Always use jQuery instead of $ inside your plugin code—that allows users to change
the alias for jQuery in a single place.

For more information and examples on creating plugins, you can go to the Authoring
page on the jQuery documentation site, or you can skip ahead to Chapter 12 where
Mike Hostetler will go into more detail.

3.9 Determining the Exact Query That Was Used
Problem
While writing a plugin or a method that extends jQuery, you need to know exactly
what the selection and the context used when calling the method so that the method
can be recalled.

Solution
We can use the core properties .selector and .context in conjunction with each other
so we can re-create the original query that was passed through. We need to use both
in conjunction because not all queries to our function or plugin will be within the
default document context:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

74 | Chapter 3: Beyond the Basics

http://plugins.jquery.com
http://docs.jquery.com/Plugins/Authoring
http://docs.jquery.com/Plugins/Authoring

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html;charset=UTF-8" />
 <title>Chapter 3 - Recipe 9 - Determining the exact query that was used</title>
 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
 <script type="text/javascript">
 <!--
 (function($){
 $.fn.ShowQuery = function(i) {
 alert("$(\""+ $(this).selector + "\", " + $(this).context +")");
 if (i < 3)
 {
 $($(this).selector, $(this).context).ShowQuery(i+1);
 }
 };
 $("div").ShowQuery(1);
 })(jQuery);
 //-->
 </script>
</head>
<body>
 <div>
 This is a div.
 </div>
</body>
</html>

Figure 3-10 shows the output.

Figure 3-10. Code output (alert box)

3.9 Determining the Exact Query That Was Used | 75

Discussion
In the preceding example, we define a method that can be called from a jQuery selec-
tion, ShowQuery. Within that method, we alert the query as it was passed in and then
recursively recall ShowQuery again with the same jQuery selector. The if statement is
there so that we don’t get into a recursive loop.

The core properties .selector and .context were introduced in jQuery 1.3, which was
released in January 2009. These methods are geared more toward plugin developers
who may need to perform an action against the original query passed in. A potential
use case of using these methods is to rerun the selection query or to check to see whether
an element is in the selection.

.selector returns as a string the actual selector that was used to match the given ele-
ments. .selector will return the whole selector if, say, the selection is broken up where
there is a selector and then the matched set is narrowed with the use of the find()
method:

$("div").find("a").selector;

//returns: "div a"

.context will return the DOM node originally passed in to jQuery(). If no context was
set in the selector, the context will default to the document.

76 | Chapter 3: Beyond the Basics

CHAPTER 4

jQuery Utilities

Jonathan Sharp

4.0 Introduction
Often, when thinking and talking about jQuery, the main concepts that come to mind
are DOM and style manipulation and behavior (events). Yet there are also a number
of “core” features and utility functions tucked away for the developer’s benefit. This
chapter is focused on exposing, disclosing, and explaining these not-so-common utility
methods of jQuery.

4.1 Detecting Features with jQuery.support
Problem
You need to attach a special click handler to all anchor tags that have just a hash for
the current page, and you don’t want to risk it breaking because of browser support
issues.

Solution
(function($) {
 $(document).ready(function() {
 $('a')
 .filter(function() {
 var href = $(this).attr('href');
 // Normalize the URL
 if (!jQuery.support.hrefNormalized) {
 var loc = window.location;
 href = href.replace(loc.protocol + '//' + loc.host + loc.pathname,
'');
 }
 // This anchor tag is of the form
 return (href.substr(0, 1) == '#');
 })

77

 .click(function() {
 // Special click handler code
 });
 });
})(jQuery);

Discussion
The jQuery.support object was added in version 1.3 and contains Boolean flags to help
write code using browser feature detection. In our example, Internet Explorer (IE) has
a different behavior in how it handles the href attribute. IE will return the full URL
instead of the exact href attribute. Using the hrefNormalized attribute, we have future-
proofed our solution in the event that a later version of IE changes this behavior. Oth-
erwise, we would have needed a conditional that contained specific browser versions.
While it may be tempting, it is best to avoid this approach because it requires future
maintenance as new versions of browsers are released. Another reason to avoid target-
ing specific browsers is that it is possible for clients to intentionally or unintentionally
report an incorrect user agent string. In addition to the hrefNormalized attribute, a
number of additional attributes exist:

boxModel
True if the browser renders according to the W3C CSS box model specification

cssFloat
True if style.cssFloat is used to get the current CSS float value

hrefNormalized
True if the browser leaves intact the results from getAttribute('href')

htmlSerialize
True if the browser properly serializes link elements with the innerHTML attribute

leadingWhitespace
True if the browser preserves leading whitespace when innerHTML is used

noCloneEvent
True if the browser does not clone event handlers when elements are cloned

objectAll
True if getElementsByTagName('*') on an element returns all descendant elements

opacity
True if the browser can interpret the CSS opacity style

scriptEval
True if using appendChild for a <script> tag will execute the script

style
True if getAttribute('style') is able to return the inline style specified by an
element

tbody
True if the browser allows <table> elements without a <tbody> element

78 | Chapter 4: jQuery Utilities

4.2 Iterating Over Arrays and Objects with jQuery.each
Problem
You need to iterate or loop over each element in an array or attribute of an object.

Solution
(function($) {
 $(document).ready(function() {
 var months = ['January', 'February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September', 'October',
 'November', 'December'];
 $.each(months, function(index, value) {
 $('#months').append('' + value + '');
 });

 var days = { Sunday: 0, Monday: 1, Tuesday: 2, Wednesday: 3,
 Thursday: 4, Friday: 5, Saturday: 6 };
 $.each(days, function(key, value) {
 $('#days').append('' + key + ' (' + value + ')');
 });
 });
})(jQuery);

Discussion
In this recipe, we iterate over both an array and an object using $.each(), which provides
an elegant interface to the common task of iteration. The first argument to the
$.each() method is the array or object to iterate over, with the second argument being
the callback method that is executed for each element. (Note that this is slightly dif-
ferent from the jQuery collection method $('div').each(), whose first argument is the
callback function.)

When the callback function defined by the developer is executed, the this variable is
set to the value of the element currently being iterated. Thus, the previous recipe could
be rewritten as follows:

(function($) {
 $(document).ready(function() {
 var months = ['January', 'February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September', 'October',
 'November', 'December'];
 $.each(months, function() {
 $('#months').append('' + this + '');
 });

 var days = { Sunday: 0, Monday: 1, Tuesday: 2, Wednesday: 3,
 Thursday: 4, Friday: 5, Saturday: 6 };
 $.each(days, function(key) {
 $('#days').append('' + key + ' (' + this + ')');
 });

4.2 Iterating Over Arrays and Objects with jQuery.each | 79

 });
})(jQuery);

4.3 Filtering Arrays with jQuery.grep
Problem
You need to filter and remove elements in an array.

Solution
(function($) {
 $(document).ready(function() {
 var months = ['January', 'February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September', 'October',
 'November', 'December'];
 months = $.grep(months, function(value, i) {
 return (value.indexOf('J') == 0);
 });
 $('#months').html('' + months.join('') + '');
 });
})(jQuery);

Discussion
This recipe uses the $.grep() method to filter the months array so that it only includes
entries that begin with the capital letter J. The $.grep method returns the filtered array.
The callback method defined by the developer takes two arguments and is expected to
return a Boolean value of true to keep an element or false to have it removed. The first
argument specified is the value of the array element (in this case, the month), and the
second argument passed in is the incremental value of the number of times the
$.grep() method has looped. So, for example, if you want to remove every other month,
you could test whether (i % 2) == 0, which returns the remainder of i / 2. (The % is
the modulus operator, which returns the remainder of a division operation. So, when
i = 4, i divided by 2 has a remainder of 0.)

(function($) {
 $(document).ready(function() {
 var months = ['January', 'February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September', 'October',
 'November', 'December'];
 months = $.grep(months, function(value, i) {
 return (i % 2) == 0;
 });
 $('#months').html('' + months.join('') + '');
 });
})(jQuery);

80 | Chapter 4: jQuery Utilities

4.4 Iterating and Modifying Array Entries with jQuery.map
Problem
You need to loop over each element in an array and modify its value.

Solution
(function($) {
 $(document).ready(function() {
 var months = ['January', 'February', 'March', 'April', 'May',
 'June', 'July', 'August', 'September', 'October',
 'November', 'December'];
 months = $.map(months, function(value, i) {
 return value.substr(0, 3);
 });
 $('#months').html('' + months.join('') + '');
 });
})(jQuery);

Discussion
In this recipe, $.map() is iterating over the months array and returns the abbreviation
(first three characters). The $.map() method takes an array and a callback method as
arguments and iterates over each array element executing the callback as defined by
the developer. The array entry will be updated with the return value of the callback.

4.5 Combining Two Arrays with jQuery.merge
Problem
You have two arrays that you need to combine or concatenate.

Solution
(function($) {
 $(document).ready(function() {
 var horseBreeds = ['Quarter Horse', 'Thoroughbred', 'Arabian'];
 var draftBreeds = ['Belgian', 'Percheron'];

 var breeds = $.merge(horseBreeds, draftBreeds);
 $('#horses').html('' + breeds.join('') + '');
 });
})(jQuery);

4.5 Combining Two Arrays with jQuery.merge | 81

Discussion
In this example, we have two arrays that contain a list of horse breeds. The arrays are
combined in the order of first + second. So, the final breeds array will look like this:

['Quarter Horse', 'Thoroughbred', 'Arabian', 'Belgian', 'Percheron']

4.6 Filtering Out Duplicate Array Entries with jQuery.unique
Problem
You have two jQuery DOM collections that need to have duplicate elements removed:

(function($) {
 $(document).ready(function() {
 var animals = $('li.animals').get();
 var horses = $('li.horses').get();
 $('#animals')
 .append($(animals).clone())
 .append($(horses).clone());
 });
})(jQuery);

Solution
(function($) {
 $(document).ready(function() {
 var animals = $('li.animals').get();
 var horses = $('li.horses').get();
 var tmp = $.merge(animals, horses);
 tmp = $.unique(tmp);
 $('#animals').append($(tmp).clone());
 });
})(jQuery);

Discussion
jQuery’s $.unique() function will remove duplicate DOM elements from an array or
collection. In the previous recipe, we combine the animals and horses arrays using
$.merge(). jQuery makes use of $.unique() throughout most of its core and internal
functions such as .find() and .add(). Thus, the most common use case for this method
is when operating on an array of elements not constructed with jQuery.

4.7 Testing Callback Functions with jQuery.isFunction
Problem
You have written a plugin and need to test whether one of the settings is a valid callback
function.

82 | Chapter 4: jQuery Utilities

Solution
(function($) {
 $.fn.myPlugin = function(settings) {
 return this.each(function() {
 settings = $.extend({ onShow: null }, settings);
 $(this).show();
 if ($.isFunction(settings.onShow)) {
 settings.onShow.call(this);
 }
 });
 };
 $(document).ready(function() {
 $('div').myPlugin({
 onShow: function() {
 alert('My callback!');
 }
 });
 });
})(jQuery);

Discussion
While the JavaScript language provides the typeof operator, inconsistent results and
edge cases across web browsers need to be taken into account. jQuery provides
the .isFunction() method to ease the developer’s job. Worth pointing out is that since
version 1.3, this method works for user-defined functions and returns inconsistent re-
sults with built-in language functions such as this:

jQuery.isFunction(document.getElementById);

which returns false in versions of Internet Explorer.

4.8 Removing Whitespace from Strings or Form Values with
jQuery.trim
Problem
You have an input form and need to remove the whitespace that a user may have entered
at either the beginning or end of a string.

Solution
<input type="text" name="first_name" class="cleanup" />
<input type="text" name="last_name" class="cleanup" />

(function($) {
 $(document).ready(function() {
 $('input.cleanup').blur(function() {
 var value = $.trim($(this).val());
 $(this).val(value);

4.8 Removing Whitespace from Strings or Form Values with jQuery.trim | 83

 });
 });
})(jQuery);

Discussion
Upon the user blurring a field, the value as entered by the user—$(this).val()—is
retrieved and passed through the $.trim() method that strips all whitespace characters
(space, tab, and newline characters) from the beginning and end of the string. The
trimmed string is then set as the value of the input field again.

4.9 Attaching Objects and Data to DOM with jQuery.data
Problem
Given the following DOM code:

var node = document.getElementById('myId');
node.onclick = function() {
 // Click handler
};
node.myObject = {
 label: document.getElementById('myLabel')
};

you have metadata associated with a DOM element for easy reference. Because of
flawed garbage collection implementations of some web browsers, the preceding code
can cause memory leaks.

Solution
Properties added to an object or DOM node at runtime (called expandos) exhibit a
number of issues because of flawed garbage collection implementations in some web
browsers. jQuery provides developers with an intuitive and elegant method
called .data() that aids developers in avoiding memory leak issues altogether:

$('#myId').data('myObject', {
 label: $('#myLabel')[0]
});

var myObject = $('#myId').data('myObject');
myObject.label;

Discussion
In this recipe, we use the .data() method, which manages access to our data and pro-
vides a clean separation of data and markup.

84 | Chapter 4: jQuery Utilities

One of the other benefits of using the data() method is that it implicitly triggers get
Data and setData events on the target element. So, given the following HTML:

<div id="time" class="updateTime"></div>

we can separate our concerns (model and view) by attaching a handler for the
setData event, which receives three arguments (the event object, data key, and data
value):

// Listen for new data
$(document).bind('setData', function(evt, key, value) {
 if (key == 'clock') {
 $('.updateTime').html(value);
 }
});

The setData event is then triggered every time we call .data() on the document element:

// Update the 'time' data on any element with the class 'updateTime'
setInterval(function() {
 $(document).data('clock', (new Date()).toString());
}, 1000);

So, in the previous recipe, every 1 second (1,000 milliseconds) we update the clock data
property on the document object, which triggers the setData event bound to the
document, which in turn updates our display of the current time.

4.10 Extending Objects with jQuery.extend
Problem
You have developed a plugin and need to provide default options allowing end users
to overwrite them.

Solution
(function($) {
 $.fn.myPlugin = function(options) {
 options = $.extend({
 message: 'Hello world',
 css: {
 color: 'red'
 }
 }, options);
 return this.each(function() {
 $(this).css(options.css).html(options.message);
 });
 };
})(jQuery);

4.10 Extending Objects with jQuery.extend | 85

Discussion
In this recipe, we use the $.extend() method provided by jQuery. $.extend() will return
a reference to the first object passed in with the latter objects overwriting any properties
they define. The following code demonstrates how this works in practice:

var obj = { hello: 'world' };
obj = $.extend(obj, { hello: 'big world' }, { foo: 'bar' });

alert(obj.hello); // Alerts 'big world'
alert(obj.foo); // Alerts 'bar';

This allows for myPlugin() in our recipe to accept an options object that will overwrite
our default settings. The following code shows how an end user would overwrite the
default CSS color setting:

$('div').myPlugin({ css: { color: 'blue' } });

One special case of the $.extend() method is that when given a single object, it will
extend the base jQuery object. Thus, we could define our plugin as follows to extend
the jQuery core:

$.fn.extend({
 myPlugin: function() {
 options = $.extend({
 message: 'Hello world',
 css: {
 color: 'red'
 }
 }, options);
 return this.each(function() {
 $(this).css(options.css).html(options.message);
 });
 }
});

$.extend() also provides a facility for a deep (or recursive) copy. This is accomplished
by passing in Boolean true as the first parameter. Here is an example of how a deep
copy would work:

var obj1 = { foo: { bar: '123', baz: '456' }, hello: 'world' };
var obj2 = { foo: { car: '789' } };

var obj3 = $.extend(obj1, obj2);

Without passing in true, obj3 would be as follows:

{ foo: { car: '789 }, hello: 'world' }

If we specify a deep copy, obj3 would be as follows after recursively copying all
properties:

var obj3 = $.extend(true, obj1, obj2);
// obj3
{ foo: { bar: '123', baz: '456', car: '789 }, hello: 'world' }

86 | Chapter 4: jQuery Utilities

CHAPTER 5

Faster, Simpler, More Fun

Michael Geary and Scott González

5.0 Introduction
Nearly every day, someone asks on the jQuery Google Group how they can make their
code simpler or faster, or how to debug a piece of code that isn’t working.

This chapter will help you simplify your jQuery code, making it easier to read and more
fun to work on. And we’ll share some tips for finding and fixing those bugs.

We’ll also help you make your code run faster, and equally important, find out which
parts of your code you need to speed up. So your site’s visitors will have more fun using
the snappy pages on your site.

That’s what we call a win-win situation. Happy coding!

5.1 That’s Not jQuery, It’s JavaScript!
Problem
You’re a web designer who is new to jQuery, and you’re having trouble with the syntax
of an if/else statement. You know it must be a simple problem, and before asking on
the jQuery mailing list, you do your homework: you search the jQuery documentation
and find nothing. Web searches for terms like jquery if else statement aren’t proving
helpful either.

You also need to split an email address into two parts, separating it at the @ sign. You’ve
heard that there is a function to split strings, but there doesn’t seem to be any infor-
mation in the jQuery documentation about this either.

Is jQuery really that poorly documented?

87

Solution
The if/else statement and the .split() method for strings are part of JavaScript, not
part of jQuery.

So, these web searches will turn up more useful results:

javascript if else statement
javascript split string

Discussion
JavaScript experts, please don’t bite the newbies.

Newbies, don’t feel bad if you’ve scratched your head over something like this.

If you’re an old pro at JavaScript, you may laugh at these questions. But they come up
fairly often on the jQuery mailing list, and understandably so. jQuery is designed to
make simple JavaScript coding so easy that someone who’s never programmed before
can pick up the basics and add useful effects to a page, without having to learn a “real”
programming language.

But jQuery is JavaScript. jQuery itself is 100% pure JavaScript code, and every line of
jQuery you write is also a line of JavaScript.

You can indeed get many simple tasks done with jQuery without really understanding
its relationship to JavaScript, but the more you learn about the underlying language,
the more productive—and less frustrating—your jQuery experience will be.

5.2 What’s Wrong with $(this)?
Problem
You have an event handler that adds a class to a DOM element, waits one second using
setTimeout(), and then removes that class:

$(document).ready(function() {
 $('.clicky').click(function() {
 $(this).addClass('clicked');
 setTimeout(function() {
 $(this).removeClass('clicked');
 }, 1000);
 });
});

The class gets added when you click, but it never gets removed. You have confirmed
that the code inside setTimeout() is being called, but it doesn’t seem to do anything.
You’ve used .removeClass() before, and that code looks correct. You are using
$(this) the same way in both places, but it doesn’t seem to work inside the
setTimeout() call.

88 | Chapter 5: Faster, Simpler, More Fun

Solution
Save this in a variable before calling setTimeout():

$(document).ready(function() {
 $('.clicky').click(function() {
 var element = this;
 $(element).addClass('clicked');
 setTimeout(function() {
 $(element).removeClass('clicked');
 }, 1000);
 });
});

Even better, since you’re calling $() in both places, follow the advice in Recipe 5.3 and
copy $(this) to a variable instead of this:

$(document).ready(function() {
 $('.clicky').click(function() {
 var $element = $(this);
 $element.addClass('clicked');
 setTimeout(function() {
 $element.removeClass('clicked');
 }, 1000);
 });
});

Discussion
What is $(this) anyway, and why doesn’t it always work? It’s easier to understand if
you separate it into its two parts, $() and this.

$() looks mysterious, but it really isn’t: it’s just a function call. $ is a reference to the
jQuery function, so $() is simply a shorter way to write jQuery(). It’s just an ordinary
JavaScript function call that happens to return an object.

If you’re using another JavaScript library that redefines $, that’s a dif-
ferent matter—but then you wouldn’t use $() in your jQuery code;
you’d use jQuery() or a custom alias.

this is one of the more confusing features in JavaScript, because it’s used for so many
different things. In object-oriented JavaScript programming, this is used in an object’s
methods to refer to that object, just like self in Python or Ruby:

function Foo(value) {
 this.value = value;
}

Foo.prototype.alert = function() {
 alert(this.value);
};

5.2 What’s Wrong with $(this)? | 89

var foo = new Foo('bar');
foo.alert(); // 'bar'

In the code for a traditional onevent attribute, this refers to the element receiving the
event—but only in the attribute itself, not in a function called from the attribute:

Test

function clicked(it) {
 alert(it.id); // 'test'
 alert(this.id); // undefined
 alert(this === window); // true (what?)
}

As you can see from the third alert(), this is actually the window object inside the
function. For historical reasons, window is the “default” meaning of this when a function
is called directly (i.e., not called as a method of an object).

In a jQuery event handler, this is the DOM element handling the event, so $(this) is
a jQuery wrapper for that DOM element. That’s why $(this).addClass() works as
expected in our “Problem” code.

But the code then calls setTimeout(), and setTimeout() works like a direct function
call: this is the window object. So when the code calls $(this).removeClass(), it’s ac-
tually trying to remove the class from the window object!

Why does copying this or $(this) into a local variable fix this? (Pun intended.) Java-
Script creates a closure for the parameters and local variables of a function.

Closures may seem mysterious at first, but they really boil down to three simple rules:

• You can nest JavaScript functions one inside another, with multiple levels of
nesting.

• A function can read and write not only its own parameters and local variables but
also those of any functions it’s nested in.

• The previous rule always works, even if the outer function has already returned
and the inner function is called later (e.g., an event handler or setTimeout()
callback).

These rules apply equally to all functions, both named and anonymous. However,
this is not a function parameter or local variable—it’s a special JavaScript keyword—
so these rules do not apply. By copying the value of this into a local variable, we take
advantage of the closure to make that value available in any nested functions.

90 | Chapter 5: Faster, Simpler, More Fun

5.3 Removing Redundant Repetition
Problem
You need to hide, show, or otherwise manipulate some DOM elements when the page
loads, and you also need to take the same actions later in response to a couple of
different events:

$(document).ready(function() {

 // Set visibility at startup
 $('#state').toggle($('#country').val() == 'US');
 $('#province').toggle($('#country').val() == 'CA');

 // Update visibility when country selector changes via mouse
 $('#country').change(function() {
 $('#state').toggle($(this).val() == 'US');
 $('#province').toggle($(this).val() == 'CA');
 });

 // Also update when country selector changes via keyboard
 $('#country').keyup(function() {
 $('#state').toggle($(this).val() == 'US');
 $('#province').toggle($(this).val() == 'CA');
 });

});

The code is working, but you want to simplify it so there’s not so much duplicate code.

Why handle both the change and keyup events? Many websites handle
only the change event on a select list. This works fine if you make a
selection with the mouse, but if you click the select list and then use the
up and down arrow keys to select among the options, nothing happens:
keystrokes in a select list do not fire the change event. If you also handle
the keyup event, the select list will respond to the arrow keys, providing
a better experience for keyboard users.

Solution 1
Move the duplicate code into a function, and call the function both at load time and
in response to the event. Use jQuery’s .bind() method to wire up both event handlers
at the same time. And save data used more than once in variables:

$(document).ready(function() {

 var $country = $('#country');

 function setVisibility() {
 var value = $country.val();
 $('#state').toggle(value == 'US');

5.3 Removing Redundant Repetition | 91

 $('#province').toggle(value == 'CA');
 }

 setVisibility();
 $country.bind('change keyup', setVisibility);
});

Solution 2
Use jQuery’s event triggering to fire the event immediately after attaching it, along with
the .bind() trick and local variables from solution 1:

$(document).ready(function() {

 $('#country')
 .bind('change keyup', function() {
 var value = $(this).val();
 $('#state').toggle(value == 'US');
 $('#province').toggle(value == 'CA');
 })
 .trigger('change');

});

Discussion
It’s standard programming practice in just about any language to take duplicate code
and move it into a separate function that can be called from multiple places. Solution
1 follows this approach: instead of repeating the code to set the visibility, it appears
once in the setVisibility() function. The code then calls that function directly at
startup and indirectly when the change event is fired.

Solution 2 also uses a common function for both of these cases. But instead of giving
the function a name so it can be called directly at startup, the code merely sets the
function as the event handler for the change event and then uses the trigger() method
to trigger that same event—thus calling the function indirectly.

These approaches are more or less interchangeable; it’s largely a matter of taste which
you prefer.

5.4 Formatting Your jQuery Chains
Problem
You have a lengthy jQuery chain that includes methods like .children() and .end() to
operate on several related groups of elements. It’s getting hard to tell which operations
apply to which elements:

$('#box').addClass('contentBox').children(':header')
 .addClass('contentTitle').click(function() {
 $(this).siblings('.contentBody').toggle();

92 | Chapter 5: Faster, Simpler, More Fun

 }).end().children(':not(.contentTitle)')
 .addClass('contentBody').end()
 .append('<div class="contentFooter"></div>')
 .children('.contentFooter').text('generated content');

Solution
Put each method call in the chain on its own line, and put the . operators at the be-
ginning of each line. Then, indent each part of the chain to indicate where you are
switching to different sets of elements.

Increase the indentation when you use methods like .children() or .siblings() to
select different elements, and decrease the indentation when you call .end() to return
to the previous jQuery selection.

If you’re new to jQuery, you’ll probably want to read the recipes about basic chaining
and .end() in Chapter 1:

$('#box')
 .addClass('contentBox')
 .children(':header')
 .addClass('contentTitle')
 .click(function() {
 $(this).siblings('.contentBody').toggle();
 })
 .end()
 .children(':not(.contentTitle)')
 .addClass('contentBody')
 .end()
 .append('<div class="contentFooter"></div>')
 .children('.contentFooter')
 .text('generated content');

Discussion
By breaking each call out onto its own line, it becomes very easy to scan the code and
see what is happening. Using indentation to indicate when you’re modifying the set of
elements makes it easy to keep track of when destructive operations are occurring and
being undone via .end().

This style of indentation results in every call for any given set of elements always being
lined up, even if they’re not consecutive. For example, it’s clear that the wrapper
<div> has an element prepended and appended to it, even though there are operations
on other elements in between.

Putting the . operators at the beginning of the lines instead of the end is just a finishing
touch: it gives a better visual reminder that these are method calls and not ordinary
function calls.

5.4 Formatting Your jQuery Chains | 93

Did jQuery invent chaining? No. jQuery does make very good use of
method chaining, but it’s something that has been around since the
earliest days of JavaScript.

For example, here is a familiar use of chaining with a string object:

function htmlEscape(text) {
 return text
 .replace('&', '&')
 .replace('<', '<')
 .replace('>', '>');
}

5.5 Borrowing Code from Other Libraries
Problem
You found a useful function in another JavaScript library and want to use the same
technique in your jQuery code. In this case, it’s the .radioClass() method from the
Ext Core library, which adds a class to the matching element(s) and removes the same
class from all siblings of the matching element(s).

The name .radioClass() comes from the behavior of radio buttons in
both web applications and desktop apps, where clicking one button
selects it and deselects the other buttons in the same radio button group.

The name radio button for those input elements comes from the station
buttons in old car radios—the mechanical ones where pushing in one
button caused all of the other buttons to pop out.

Given this HTML:

<div>
 <div id="one" class="hilite">One</div>
 <div id="two">Two</div>
 <div id="three">Three</div>
 <div id="four">Four</div>
</div>

you’d like to run code like this:

// Add the 'hilite' class to div#three, and
// remove the class from all of its siblings
// (e.g. div#one)

$('#three').radioClass('hilite');

You may even want to allow a “multiple-select” radio class:

// Add the 'hilite' class to div#two and
// div#four, and remove the class from the

94 | Chapter 5: Faster, Simpler, More Fun

http://jquery-cookbook.com/go/ext-core

// other siblings (div#one and div#three)

$('#two,#four').radioClass('hilite');

Solution
Write a simple plugin to add the .radioClass() method to jQuery:

// Remove the specified class from every sibling of the selected
// element(s), then add that class to the selected element(s).
// Doing it in that order allows multiple siblings to be selected.
//
// Thanks to Ext Core for the idea.

jQuery.fn.radioClass = function(cls) {
 return this.siblings().removeClass(cls).end().addClass(cls);
};

This is a short enough function that it’s not too hard to follow as a one-liner, but
indenting the code as described in Recipe 5.4 makes it completely clear how it works:

jQuery.fn.radioClass = function(cls) {
 return this // Start chain, will return its result
 .siblings() // Select all siblings of selected elements
 .removeClass(cls) // Remove class from those siblings
 .end() // Go back to original selection
 .addClass(cls); // Add class to selected elements
};

Discussion
The composer Igor Stravinsky is reported to have said, “Good composers borrow; great
composers steal.” He apparently stole the quote from T.S. Eliot, who wrote, “Immature
poets imitate; mature poets steal.”

Good ideas come from many places, and other JavaScript libraries are chock-full of
good code and ideas. If there is code in another open source library that you can use
or that you can translate to work with jQuery, you’re free to do that—if you respect
the other author’s copyright and license.

For information on open source and free software, see the following
sites:

• http://www.opensource.org/

• http://www.fsf.org/

You may not even need the actual code in a case like this one, where the implementation
is very simple and just the idea of having a “radio class” method is the missing link.
While not required, it’s a good courtesy to give credit to the source of the idea.

5.5 Borrowing Code from Other Libraries | 95

http://www.opensource.org/
http://www.fsf.org/

Whether the idea comes from elsewhere or is something you thought of yourself, in a
surprising number of cases you can write a useful jQuery plugin in one or a few lines
of code.

What Is jQuery.fn, and Why Do jQuery Plugins Use It?
jQuery.fn is a reference to the same object as jQuery.prototype. When you add a func-
tion to the jQuery.fn object, you’re really adding it to jQuery.prototype.

When you create a jQuery object with jQuery() or $(), you’re actually calling new
jQuery(). (The jQuery code automatically does the new for you.) As with any other
JavaScript constructor, jQuery.prototype provides methods and default properties for
the objects returned by each new jQuery() call. So, what you’re really doing when you
write a jQuery.fn plugin is traditional object-oriented JavaScript programming, adding
a method to an object using the constructor’s prototype.

Then why does jQuery.fn exist at all? Why not just use jQuery.prototype like any other
object-oriented JavaScript code? It’s not just to save a few characters.

The very first version of jQuery (long before 1.0) didn’t use JavaScript’s prototype
feature to provide the methods for a jQuery object. It copied references to every property
and method in jQuery.fn (then called $.fn) into the jQuery object by looping through
the object.

Since this could be hundreds of methods and it happened every time you called $(), it
could be rather slow. So, the code was changed to use a JavaScript prototype to elim-
inate all the copying. To avoid breaking plugins that already used $.fn, it was made an
alias of $.prototype:

$.fn = $.prototype;

So that’s why jQuery.fn exists today—because plugins used $.fn in early 2006!

5.6 Writing a Custom Iterator
Problem
You’ve selected multiple elements into a jQuery object, and you need to iterate through
those elements with a pause between each iteration, for example, to reveal elements
one by one:

Ready?
On your mark!
Get set!
Go!

You tried using each(), but of course that revealed the elements all at once:

$('.reveal').each(function() {
 $(this).show();
});

96 | Chapter 5: Faster, Simpler, More Fun

// That was no better than this simpler version:
$('.reveal').show();

Solution
Write a custom iterator that uses setTimeout() to delay the callbacks over time:

// Iterate over an array (typically a jQuery object, but can
// be any array) and call a callback function for each
// element, with a time delay between each of the callbacks.
// The callback receives the same arguments as an ordinary
// jQuery.each() callback.
jQuery.slowEach = function(array, interval, callback) {
 if(! array.length) return;
 var i = 0;
 next();

 function next() {
 if(callback.call(array[i], i, array[i]) !== false)
 if(++i < array.length)
 setTimeout(next, interval);
 }

 return array;
};
// Iterate over "this" (a jQuery object) and call a callback
// function for each element, with a time delay between each
// of the callbacks.
// The callback receives the same arguments as an ordinary
// jQuery(...).each() callback.
jQuery.fn.slowEach = function(interval, callback) {
 return jQuery.slowEach(this, interval, callback);
};

Then simply change your .each() code to use .slowEach() and add the timeout value:

// Show an element every half second
$('.reveal').slowEach(500, function() {
 $(this).show();
});

Discussion
jQuery’s .each() method is not rocket science. In fact, if we strip the jQuery 1.3.2
implementation down to the code actually used in the most typical use (iterating over
a jQuery object), it’s a fairly straightforward loop:

jQuery.each = function(object, callback) {
 var value, i = 0, length = object.length;
 for(
 value = object[0];
 i < length && callback.call(value, i, value) !== false;
 value = object[++i]
) {}

5.6 Writing a Custom Iterator | 97

 return object;
};

That could also be coded in a more familiar way:

jQuery.each = function(object, callback) {
 for(
 var i = 0, length = object.length;
 i < length;
 ++i
) {
 var value = object[i];
 if(callback.call(value, i, value) === false)
 break;
 }

 return object;
};

We can write similar functions to iterate over arrays or jQuery objects in other useful
ways. A simpler example than .slowEach() is a method to iterate over a jQuery object
in reverse:

// Iterate over an array or jQuery object in reverse order
jQuery.reverseEach = function(object, callback) {
 for(var value, i = object.length; --i >= 0;) {
 var value = object[i];
 console.log(i, value);
 if(callback.call(value, i, value) === false)
 break;
 }
};
// Iterate over "this" (a jQuery object) in reverse order
jQuery.fn.reverseEach = function(callback) {
 jQuery.reverseEach(this, callback);
 return this;
};

This doesn’t attempt to handle all of the cases that .each() handles, just the ordinary
case for typical jQuery code.

Interestingly enough, a custom iterator may not use a loop at all. .reverseEach() and
the standard .each() both use fairly conventional loops, but there’s no explicit Java-
Script loop in .slowEach(). Why is that, and how does it iterate through the elements
without a loop?

JavaScript in a web browser does not have a sleep() function as found in many lan-
guages. There’s no way to pause script execution like this:

doSomething();
sleep(1000);
doSomethingLater();

Instead, as with any asynchronous activity in JavaScript, the setTimeout() function
takes a callback that is called when the time interval elapses. The .slowEach() method

98 | Chapter 5: Faster, Simpler, More Fun

increments the “loop” variable i in the setTimeout() callback, using a closure to
preserve the value of that variable between “iterations.” (See Recipe 5.2 for a discussion
of closures.)

Like .each(), .slowEach() operates directly on the jQuery object or array you give it,
so any changes you make to that array before it finishes iterating will affect the iteration.
Unlike .each(), .slowEach() is asynchronous (the calls to the callback function happen
after .slowEach() returns), so if you change the jQuery object or its elements af-
ter .slowEach() returns but before all the callbacks are done, that can also affect the
iteration.

5.7 Toggling an Attribute
Problem
You need a way to toggle all of the checkmarks in a group of checkboxes. Each checkbox
should be toggled independently of the others.

Solution
Write a .toggleCheck() plugin that works like the .toggle() and .toggleClass() meth-
ods in the jQuery core to allow you to set, clear, or toggle a checkbox or group of
checkboxes:

// Check or uncheck every checkbox element selected in this jQuery object
// Toggle the checked state of each one if check is omitted.

jQuery.fn.toggleCheck = function(check) {
 return this.toggleAttr('checked', true, false, check);
};

Then you can enable a group of buttons:

$('.toggleme').toggleCheck(true);

or disable them:

$('.toggleme').toggleCheck(false);

or toggle them all, each one independent of the rest:

$('.toggleme').toggleCheck();

This .toggleCheck() method is built on top of a more general-purpose .toggleAttr()
method that works for any attribute:

// For each element selected in this jQuery object,
// set the attribute 'name' to either 'onValue' or 'offValue'
// depending on the value of 'on. If 'on' is omitted,
// toggle the attribute of each element independently
// between 'onValue' and 'offValue'.
// If the selected value (either 'onValue' or 'offValue') is

5.7 Toggling an Attribute | 99

// null or undefined, remove the attribute.
jQuery.fn.toggleAttr = function(name, onValue, offValue, on) {

 function set($element, on) {
 var value = on ? onValue : offValue;
 return value == null ?
 $element.removeAttr(name) :
 $element.attr(name, value);
 }
 return on !== undefined ?
 set(this, on) :
 this.each(function(i, element) {
 var $element = $(element);
 set($element, $element.attr(name) !== onValue);
 });
};

Why go to the trouble of building something so general-purpose? Now we can write
similar togglers for other attributes with almost no effort. Suppose you need to do the
same thing as .toggleCheck(), but now you’re enabling and disabling input controls.
You can write a .toggleEnable() in one line of code:

// Enable or disable every input element selected in this jQuery object.
// Toggle the enable state of each one if enable is omitted.

jQuery.fn.toggleEnable = function(enable) {
 return this.toggleAttr('disabled', false, true, enable);
};

Note how the onValue and offValue parameters let us swap the true and false attribute
values, making it easy to talk about “enabling” the element instead of the less intuitive
“disabling” that the disabled attribute provides normally.

As another example, suppose we need to toggle a foo attribute where its “on” state is
the string value bar, and its “off” state is to remove the attribute. That’s another
one-liner:

// Add or remove an attribute foo="bar".
// Toggle the presence of the attribute if add is omitted.

jQuery.fn.toggleFoo = function(add) {
 return this.toggleAttr('foo', 'bar', null, add);
};

Discussion
It’s always good to beware of feeping creaturism (aka creeping featurism). If all we really
needed were to toggle checkboxes, we could code the whole thing like this:

jQuery.fn.toggleCheck = function(on) {
 return on !== undefined ?
 this.attr('checked', on) :
 this.each(function(i, element) {
 var $element = $(element);
 $element.attr('checked', ! $element.attr('checked'));

100 | Chapter 5: Faster, Simpler, More Fun

 });
};

That is a bit simpler than our .toggleAttr() method, but it’s only useful for the
checked attribute and nothing else. What would we do if we later needed
that .toggleEnable() method? Duplicate the whole thing and change a few names?

The extra work in .toggleAttr() buys us a lot of flexibility: we now can write a whole
family of attribute togglers as straightforward one-liners.

Check the documentation for the version of jQuery you’re using before
writing new utility methods like this. It’s always possible that similar
methods could be added to future versions of jQuery, saving you the
trouble of writing your own.

5.8 Finding the Bottlenecks
Problem
Your site is too slow to load or too slow to respond to clicks and other user interaction,
and you don’t know why. What part of the code is taking so much time?

Solution
Use a profiler, either one of the many available ones or a simple one you can code
yourself.

Discussion
A profiler is a way to find the parts of your code that take the most time. You probably
already have at least one good JavaScript profiler at your fingertips. Firebug has one,
and others are built into IE 8 and Safari 4. These are all function profilers: you start
profiling, interact with your page, and stop profiling, and then you get a report showing
how much time was spent in each function. That may be enough right there to tell you
which code you need to speed up.

There are also some profilers specific to jQuery that you can find with a web search for
jquery profiler. These let you profile selector performance and look more deeply at
jQuery function performance.

For really detailed profiling, where you need to analyze individual sections of code
smaller than the function level, you can write a simple profiler in just a few lines of
code. You may have coded this ad hoc classic:

var t1 = +new Date;
// ... do stuff ...
var t2 = +new Date;
alert((t2 - t1) + ' milliseconds');

5.8 Finding the Bottlenecks | 101

The +new Date in this code is just a simpler way of coding the more
familiar new Date().getTime(): it returns the current time in
milliseconds.

Why does it work? Well, the new Date part is the same: it gives you a
Date object representing the current time. (The () are optional, as there
are no arguments.) The + operator converts that object to a number. The
way JavaScript converts an object to a number is by calling the ob-
ject’s .valueOf() method. And the .valueOf() method for a Date
object happens to be the same thing as .getTime(), giving the time in
milliseconds.

We can make something more general-purpose and easier to use with only 15 lines
of code:

(function() {

 var log = [], first, last;

 time = function(message, since) {
 var now = +new Date;
 var seconds = (now - (since || last)) / 1000;
 log.push(seconds.toFixed(3) + ': ' + message + '
');
 return last = +new Date;
 };

 time.done = function(selector) {
 time('total', first);
 $(selector).html(log.join(''));
 };

 first = last = +new Date;
})();

Now we have a time() function that we can call as often as we want to log the elapsed
time since the last time() call (or, optionally, since a specific prior time). When we’re
ready to report the results, we call time.done(). Here’s an example:

// do stuff
time('first');
// do more stuff
time('second');
// and more
time('third');
time.done('#log');

That JavaScript code requires this HTML code to be added to your page:

<div id="log">
</div>

102 | Chapter 5: Faster, Simpler, More Fun

After the code runs, that <div> would get filled with a list like this:

0.102 first
1.044 second
0.089 third
1.235 total

We can see that the largest amount of time is being spent between the time('first')
and time('second') calls.

Beware of Firebug! If you have Firebug enabled on the page you are
timing, it can throw off the results considerably. JavaScript’s eval()
function, which jQuery 1.3.2 and earlier use to evaluate downloaded
JSON data, is affected to an extreme degree: an array of 10,000 names
and addresses in the format from Recipe 5.11 takes 0.2 seconds in Fire-
fox normally, but 55 seconds with Firebug’s Script panel enabled. Later
versions of jQuery use Function() for this, which isn’t affected by
Firebug.

If Firebug affects your page as badly as that and if you can’t find a work-
around, you may want to detect Firebug and display a warning:

<div id="firebugWarning" style="display:none;">
 Your warning here
</div>

$(document).ready(function() {
 if(window.console && console.firebug)
 $('#firebugWarning').show();
});

For many optimization exercises, this code may be sufficient. But what if the code we
need to test is inside a loop?

for(var i = 0; i < 10; ++i) {
 // do stuff
 time('first');
 // do more stuff
 time('second');
 // and more
 time('third');
}
time.done('#log');

Now our little profiler will list those first, second, and third entries 10 times each! That’s
not too hard to fix—we just need to accumulate the time spent for each specific message
label when it’s called multiple times:

5.8 Finding the Bottlenecks | 103

(function() {

 var log = [], index = {}, first, last;

 // Accumulate seconds for the specified message.
 // Each message string has its own total seconds.
 function add(message, seconds) {
 var i = index[message];
 if(i == null) {
 i = log.length;
 index[message] = i;
 log[i] = { message:message, seconds:0 };
 }
 log[i].seconds += seconds;
 }

 time = function(message, since) {
 var now = +new Date;
 add(message, (now - (since || last)) / 1000);
 return last = +new Date;
 }

 time.done = function(sel) {
 time('total', first);
 $(sel).html(
 $.map(log, function(item) {
 return(
 item.seconds.toFixed(3) +
 ': ' +
 item.message + '
'
);
 }).join('')
);
 };

 first = last = +new Date;
})();

With this change, we’ll get useful results from that loop:

0.973 first
9.719 second
0.804 third
11.496 total

When Timing Test Results Vary
When you run timing tests on a web page, you won’t get the same result every time. In
fact, the timing results will probably vary quite a bit if you reload a page or rerun a test
multiple times.

What should you do to get the “real” number? Average the results?

Probably not. Here’s a chart of the fillTable() timing from Recipe 5.11 for 50 con-
secutive runs, taken about 10 seconds apart:

104 | Chapter 5: Faster, Simpler, More Fun

There’s a distinct pattern here: a large majority of runs in the 150–200 millisecond
range, with a small number of scattered runs taking longer. It seems likely that some-
thing around 175 milliseconds is the real timing, and the runs taking much longer were
affected by other processes on the machine.

It’s also possible that some of the longer runs are caused by garbage collection in the
browser. It would be hard to distinguish that from time taken by other processes, so
the most practical thing is probably just to disregard these outliers.

5.9 Caching Your jQuery Objects
Problem
You’re logging the various properties of the event object for a mousemove event, and the
code lags behind because it uses $('.classname') selectors to find and update table
cells with the event data.

Your page contains this HTML code for the log:

<table id="log">
 <tr><td>Client X:</td><td class="clientX"></td></tr>
 <tr><td>Client Y:</td><td class="clientY"></td></tr>
 <tr><td>Page X:</td><td class="pageX"></td></tr>
 <tr><td>Page Y:</td><td class="pageY"></td></tr>
 <tr><td>Screen X:</td><td class="screenX"></td></tr>
 <tr><td>Screen Y:</td><td class="screenY"></td></tr>
</table>

and this JavaScript code:

$('html').mousemove(function(event) {
 $('.clientX').html(event.clientX);
 $('.clientY').html(event.clientY);
 $('.pageX').html(event.pageX);
 $('.pageY').html(event.pageY);
 $('.screenX').html(event.screenX);
 $('.screenY').html(event.screenY);
});

5.9 Caching Your jQuery Objects | 105

The page also contains a large number (thousands!) of other DOM elements. In a sim-
pler test page, the code performs fine, but in this complex page it is too slow.

Solution
Cache the jQuery objects returned by the $(...) calls, so the DOM queries only have
to be run once:

var
 $clientX = $('.clientX'),
 $clientY = $('.clientY'),
 $pageX = $('.pageX'),
 $pageY = $('.pageY'),
 $screenX = $('.screenX'),
 $screenY = $('.screenY');
$('html').mousemove(function(event) {
 $clientX.html(event.clientX);
 $clientY.html(event.clientY);
 $pageX.html(event.pageX);
 $pageY.html(event.pageY);
 $screenX.html(event.screenX);
 $screenY.html(event.screenY);
});

You may also be able to speed up those selectors considerably; see the next recipe for
ways to do that. But simply calling them once each instead of over and over again may
be enough of an improvement right there.

Discussion
One of the classic ways to optimize code is to “hoist” repeated calculations out of a
loop so you have to do them only once. Any values that don’t change inside the loop
should be calculated one time, before the loop starts. If those are expensive calculations,
the loop will then be much faster.

This works just as well when the “loop” is a series of frequently fired events such as
mousemove and the “calculation” is a jQuery selector. Hoisting the selector out of the
event handler makes the event handler respond faster.

Of course, if you’re calling multiple selectors inside a loop, that will also benefit from
moving them outside the loop in the same manner.

106 | Chapter 5: Faster, Simpler, More Fun

Why do $clientX and the other variable names begin with the $
character?

$ doesn’t have any special meaning in JavaScript—it’s treated just like
a letter of the alphabet. It’s simply a popular convention in jQuery code
to use the $ prefix as a reminder that the variable contains a reference
to a jQuery object and not, say, a DOM element, because a variable
name of $foobar has a visual resemblance to the jQuery operation
$('#foobar').

This is especially helpful when you need to use both a jQuery object and
its underlying DOM element, e.g.:

var $foo = $('#foo'), foo = $foo[0];
// Now you can use the jQuery object:
$foo.show();
// or the DOM element:
var id = foo.id;

5.10 Writing Faster Selectors
Problem
Your code contains a large number of $('.classname') selectors. You’re caching them
as described in the previous recipe, but the selectors are still affecting your page load
time. You need to make them faster.

Solution
First, make sure you are using a recent version of jQuery (1.3.2 or later) for faster
selector performance in most browsers, especially with class selectors.

If you have control over the HTML page content, change the page to use id attributes
and '#xyz' selectors instead of class attributes and '.xyz' selectors:

<div class="foo"></div>
<div id="bar"></div>

$('.foo') // Slower
$('#bar') // Faster

If you must use class name selectors, see whether there is a parent element that you can
find with a faster ID selector, and then drill down from there to the child elements. For
example, using the HTML from the previous recipe:

<table id="log">
 <tr><td>Client X:</td><td id="clientX"></td></tr>
 ...
</table>

5.10 Writing Faster Selectors | 107

you could use this:

$('.clientX') // Slower
$('td.clientX') // May be faster
$('#log .clientX') // May be much faster
$('#log td.clientX') // Possibly faster in some browsers

Beware of selector speed test pages that don’t reflect the actual page
content you are using. In a very simple page, a simple $('.clientX')
selector may test out faster than a fancier selector like
$('#log td.clientX')—even in browsers and jQuery versions where
you might expect the class selector to be slow.

That’s just because the more complicated selector takes more time to
set up, and in a simple page that setup time may dominate performance.

The test page for this recipe deliberately contains a very large number
of elements to provoke selector performance problems that only show
up in large pages.

Neither one, of course, shows exactly what any selector’s performance
will be in your page. The only way to be sure which selector is fastest in
a particular page is to test each in that page.

Discussion
It’s easy to forget that an innocent-looking call like $('.clientX') may take consider-
able time. Depending on the browser and version of jQuery, that selector may have to
make a list of every DOM element in your page and loop through it looking for the
specified class.

jQuery versions prior to 1.3 use this slow method in every browser. jQuery 1.3 intro-
duced the Sizzle selector engine, which takes advantage of faster DOM APIs in newer
browsers such as getElementsByClassName() and querySelectorAll().

However, for most websites you’ll probably need to support IE 7 for some time to come,
and class selectors are slow in IE 7 when you have a complex page.

If you can use it, selecting by ID as in $('#myid') is generally very fast in all browsers,
because it simply uses a single call to the getElementById() API.

It also helps to narrow down the number of elements that need to be searched, either
by specifying a parent element, by making the class selector more specific with a tag
name, or by combining those and other tricks.

108 | Chapter 5: Faster, Simpler, More Fun

5.11 Loading Tables Faster
Problem
You’re loading a JSON data object with 1,000 names and addresses and using jQuery
to create a table with this data. It takes 5–10 seconds to create the table in IE 7—and
that’s not even counting the download time.

Your JSON data is in this format:

{
 "names": [
 {
 "first": "Azzie",
 "last": "Zalenski",
 "street": "9554 Niemann Crest",
 "city": "Quinteros Divide",
 "state": "VA",
 "zip": "48786"
 },
 // and repeat for 1000 names
]
}

Your JavaScript code is as follows:

// Return a sanitized version of text with & < > escaped for HTML
function esc(text) {
 return text
 .replace('&', '&')
 .replace('<', '<')
 .replace('>', '>');
}
$(document).ready(function() {

 function fillTable(names) {
 $.each(names, function() {
 $('<tr>')
 .append($('<td>').addClass('name').html(
 esc(this.first) + ' ' + esc(this.last)
))
 .append($('<td>').addClass('address').html(
 esc(this.street) + '
' +
 esc(this.city) + ', ' +
 esc(this.state) + ' ' + esc(this.zip)
))
 .appendTo('#nameTable');
 });
 }

 $.getJSON('names/names-1000.json', function(json) {
 fillTable(json.names);
 });
});

5.11 Loading Tables Faster | 109

And you have this HTML code in your document:

<table id="nameTable">
</table>

It works fine, resulting in the browser display shown in Figure 5-1.

Figure 5-1. Browser output for name table

It’s just much too slow.

Solution
Combine several optimizations:

• Insert a single <table> or <tbody> instead of multiple <tr> elements

• Use .innerHTML or .html() instead of DOM manipulation

• Build an array with a[++i] and .join() it instead of string concatenation

• Use a bare-metal for loop instead of $.each

• Reduce name lookups

The result is this new version of the code (using the same esc() function as before):

$(document).ready(function() {

 function fillTable(names) {
 // Reduce name lookups with local function name
 var e = esc;
 //
 var html = [], h = −1;
 html[++h] = '<table id="nameTable">';
 html[++h] = '<tbody>';
 for(var name, i = −1; name = names[++i];) {
 html[++h] = '<tr><td class="name">';
 html[++h] = e(name.first);

110 | Chapter 5: Faster, Simpler, More Fun

 html[++h] = ' ';
 html[++h] = e(name.last);
 html[++h] = '</td><td class="address">';
 html[++h] = e(name.street);
 html[++h] = '
';
 html[++h] = e(name.city);
 html[++h] = ', ';
 html[++h] = e(name.state);
 html[++h] = ' ';
 html[++h] = e(name.zip);
 html[++h] = '</td></tr>';
 }
 html[++h] = '</tbody>';
 html[++h] = '</table>';

 $('#container')[0].innerHTML = html.join('');
 }

 $.getJSON('names/names-1000.json', function(json) {
 fillTable(json.names);
 });
});

The new code requires the HTML code in your document to be changed to the
following:

<div id="container">
</div>

On one test system in IE 7, the new code runs in 0.2 seconds compared with 7 seconds
for the original code. That’s 35 times faster!

Granted, the code is not as clean and elegant as the original, but your site’s visitors will
never know or care about that. What they will notice is how much faster your page
loads.

Discussion
Sometimes you’ll get lucky and find that one specific optimization is all it takes to fix
a performance problem. Sometimes, as in this recipe, you’ll need several tricks to get
the speed you want.

The biggest speed boost in this code comes from inserting a single <table> element with
all its children in a single DOM operation, instead of inserting a lengthy series of
<tr> elements one by one. In order to do this, you need to generate the entire table as
HTML. That means you need to paste together a large number of strings to build the
HTML, which can be very fast or very slow depending on how you do it. And with
1,000 items to loop though, it’s worth finding the fastest way to write the loop itself.

You may wonder, “Is this still jQuery code? It looks like plain old JavaScript!” The
answer is yes, and yes. It’s quite all right to mix and match jQuery code with other
JavaScript code. You can use simpler jQuery ways of coding in most of your site, and

5.11 Loading Tables Faster | 111

when you discover the slow parts, you can either find faster jQuery techniques or use
plain old JavaScript as needed for performance.

5.12 Coding Bare-Metal Loops
Problem
You’re calling $.each(array,fn) or $(selector).each(fn) to iterate over thousands of
items in your code, and you suspect that all those function calls may be adding to your
load time:

$.each(array, function() {
 // do stuff with this
});

or:

$('.lotsOfElements').each(function() {
 // do stuff with this or $(this)
});

Solution
Use a for loop instead of .each(). To iterate over an array, it’s hard to beat this loop:

for(var item, i = −1; item = array[++i]) {
 // do stuff with item
}

But there is a catch: this loop works only if your array has no “false” elements, that is,
elements whose value is undefined, null, false, 0, or "". Even with that restriction, this
loop is useful in many common cases, such as iterating over a jQuery object. Just be
sure to cache the object in a variable:

var $items = $('.lotsOfElements');
for(var item, i = −1; item = $item[++i]) {
 // do stuff with item (a DOM node)
}

It’s also common to have JSON data that contains an array of objects as in our example
from Recipe 5.11:

{
 "names": [
 {
 // ...
 "zip": "48786"
 },
 // and repeat for 1000 names
]
}

112 | Chapter 5: Faster, Simpler, More Fun

If you know that none of the objects making up the elements of the names array will
ever be null, it’s safe to use the fast loop.

For a more general-purpose loop that works with any array, there is always the classic
loop that you’ll see in many places:

for(var i = 0; i < array.length; i++) {
 var item = array[i];
 // do stuff with item
}

But you can improve that loop in three ways:

• Cache the array length.

• Use ++i, which is faster than i++ in some browsers.

• Combine the test and increment of the loop variable to remove one name lookup.

The result is as follows:

for(var i = −1, n = array.length; ++i < n;) {
 var item = array[i];
 // do stuff with item
}

Would it be even faster to use a while loop or a do...while loop? Prob-
ably not. You could rewrite the previous loop as follows:

var i = −1, n = array.length;
while(++i < n) {
 var item = array[i];
 // do stuff with item
}

or:

var i = 0, n = array.length;
if(i < n) do {
 var item = array[i];
 // do stuff with item
}
while(++i < n);

But neither one is any faster than the more readable for loop.

To iterate over an object (not an array), you can use a for..in loop:

for(var key in object) {
 var item = object[key];
 // do stuff with item
}

5.12 Coding Bare-Metal Loops | 113

A Warning About for..in Loops
Never use a for..in loop to iterate over a jQuery object or an array of any type. If the
array has any custom properties or methods, those will be iterated along with the nu-
meric array elements. For example, this code enumerates a single DOM element, the
document body (with i = 0):

$('body').each(function(i) { console.log(i); });

This code may look like it would do the same thing, but it enumerates all of the jQuery
methods such as show and css along with the [0] element:

for(var i in $('body')) console.log(i); // BAD

Instead, use one of the array loops listed previously.

Even the “safe” use of a for..in loop to iterate over an object can get in trouble if any
code on your page has modified Object.prototype to extend all objects with additional
methods or properties. The loop will enumerate those methods or properties along
with the ones you want.

Extending Object.prototype is strongly discouraged because it breaks so much code.
In fact, at least through jQuery 1.3.2, it breaks jQuery itself by causing each() to enu-
merate those added methods or properties. If your code has to work in such an envi-
ronment, you need to take extra precautions on all your loops, such as testing the
hasOwnProperty() method of each object property. Unfortunately, these extra tests slow
the code down, so you have to choose between speed and robustness.

Discussion
$(selector).each(fn) is the customary way to create a jQuery object and iterate over
it, but it’s not the only way. The jQuery object is an “array-like” object with .length
and [0], [1], ..., [length-1] properties. Therefore, you can use any of the looping
techniques you would use with any other array. And because the jQuery object never
contains “false” elements, you can use the fastest for loop listed at the beginning of the
solution.

If you use the time() function from Recipe 5.2 or another profiler to measure loop
performance, be sure to test your actual code, not a simplified test case that just runs
the loop without the full loop body. The simplified test would miss one potential benefit
of the for loop: fewer name lookups resulting from less function nesting. See Rec-
ipe 5.13 for the details.

114 | Chapter 5: Faster, Simpler, More Fun

5.13 Reducing Name Lookups
Problem
Your code has an inner loop, down inside several levels of nested functions, that runs
hundreds or thousands of times. The inner loop calls several global functions, and it
references some variables defined in the outer functions or globally.

Each of these references is triggering several name lookups because of the nested func-
tions. It’s slowing down your code, but profilers don’t show what the problem is, and
it isn’t obvious from looking at the code that there’s a problem!

Solution
Investigate every name that appears in your innermost loop, and figure out how many
name lookups it requires. Reduce the number of name lookups by caching object ref-
erences locally or using fewer nested functions.

Discussion
Closures are a wonderful thing. They make it trivial to capture state information and
pass it along to asynchronous functions such as event handlers or timer callbacks. If
JavaScript didn’t have closures, then every asynchronous callback would need to have
a way to pass that state around. Instead, you can simply use a nested function.

The dynamic nature of JavaScript is also a wonderful thing. You can add properties
and methods to any object, any time, and the JavaScript runtime will happily chase
down those references when you need them.

Put these together, and you can get a lot of name lookups.

The most modern JavaScript interpreters have improved greatly in this
area. But if you want your code to run fast in the most popular
browsers—such as any version of IE— you still need to worry about the
number of name lookups.

Consider this code:

// A typical function wrapper to get a local scope
(function() {
 // Find the largest absolute value in an array of numbers
 function maxMagnitude(array) {
 var largest = -Infinity;
 $.each(array, function() {
 largest = Math.max(largest, Math.abs(this));
 });
 return largest;
 }

5.13 Reducing Name Lookups | 115

 // Other code here calls maxMagnitude on a large array
})();

Remember that JavaScript looks up a name first in the local scope (function), and if the
name isn’t found there, it works its way up through the parent nested functions and
finally the global scope. Not only does the JavaScript runtime have to look up each
name every time you use it, it also has to repeat those lookups when the names are
actually defined in parent functions or in the global scope.

So, if this block of code is in the global scope, the each() callback does the following
name lookups in every iteration:

1. largest in local scope [fail]
2. largest in MaxMagnitude() [success]
3. Math in local scope [fail]
4. Math in MaxMagnitude() [fail]
5. Math in anonymous wrapper function [fail]
6. Math in global scope [success]
7. abs in Math object [success]
8. Math in local scope [fail]
9. Math in MaxMagnitude() [fail]
10. Math in anonymous wrapper function [fail]
11. Math in global scope [success]
12. max in Math object [success]
13. largest in local scope [fail]
14. largest in MaxMagnitude() [success]

Now rewrite the code as follows:

// A typical wrapper to get a local scope
(function() {
 // Find the largest absolute value in an array of numbers
 function maxMagnitude(array) {
 var abs = Math.abs, max = Math.max;
 var largest = -Infinity;
 for(var i = −1, n = array.length; ++i < n;) {
 largest = max(largest, abs(array[i]));
 }
 return largest;
 }
 // Other code here calls maxMagnitude on a large array
})();

This not only eliminates the callback function call in every iteration, it also reduces the
number of name lookups per iteration by 10 or more. The loop body in this version
does these name lookups:

1. largest in local scope [success]
2. abs in local scope [success]
3. max in local scope [success]
4. largest in local scope [success]

That’s more than a 70 percent improvement over the first version.

116 | Chapter 5: Faster, Simpler, More Fun

If this code is nested even deeper inside another function, the difference is even greater,
since each nested function adds one more lookup for each of the Math object lookups.

In this discussion we’re omitting the this and array[i] lookups, as well
as the lookups in the for loop itself. Those are roughly comparable be-
tween the two versions.

In Recipe 5.11, a single name lookup optimization accounts for a 100 ms improvement.
That’s not a huge difference, but a tenth of a second off your page load time for a one-
line code change is good value.

The original code calls esc() six times in each loop iteration, for a total of 6,000 calls
in the thousand-name test case. These calls are inside three nested functions, and
esc() is a global function, so it takes four name lookups simply to resolve the function
name for each call. That’s 24,000 name lookups!

The improved code reduces the function nesting by one, so that cuts it down to 18,000
name lookups (two nested functions and the global scope at 6,000 each), but then it
uses one last trick in the innermost function:

function fillTable(names) {
 var e = esc;
 // and now call e() in the inner loop instead of esc()
}

Now, the 6,000 calls to e() are each resolved in a single name lookup. That’s a
reduction of 12,000 name lookups. No wonder it knocks a tenth of a second off the
load time.

5.14 Updating the DOM Faster with .innerHTML
Problem
You’re creating a large block of HTML code and using $('#mydiv').html(myhtml); to
insert it into the DOM. You’ve profiled the code and found that the .html() method is
taking longer than expected.

Solution
Use $('#mydiv')[0].innerHTML = myhtml; for faster DOM updates—if you don’t
require any of the special processing that .html() provides.

Discussion
The .html() method uses the .innerHTML property to actually insert the HTML content
into the DOM, but it does quite a bit of preprocessing first. In most cases this won’t

5.14 Updating the DOM Faster with .innerHTML | 117

matter, but in performance-critical code you can save some time by setting
the .innerHTML property directly.

It’s actually jQuery’s internal .clean() method that does this processing. If you read
the source code for .clean(), you’ll see that it goes to quite a bit of work to clean up
the HTML input.

The easiest way to find most methods in the jQuery source code is to
search for the method name with a : after it; e.g., to find the .clean()
method, search for clean: in the uncompressed jQuery source.

The code in Recipe 5.11 runs afoul of some of this cleanup. That recipe’s HTML code
contains a large number of
 tags. There’s a regular expression in .clean() that
finds all self-closing tags (tags that end with /> and therefore do not require a closing
tag) and checks that these tags are indeed in the limited set of HTML tags that can be
self-closed. If not, then it converts the HTML to an open–close tag.

For example, if you code $('#test').html('<div />');, then this invalid HTML is au-
tomatically converted to $('#test').html('<div></div>');. This makes coding easier,
but if you have a very long HTML string that contains many self-closing
tags, .clean() has to check them all—even if all those tags are valid like the
 tags
in the other recipe.

The .html() method replaces any existing content, and it takes care to avoid memory
leaks by removing all event handlers that you’ve attached through jQuery to any of the
elements being replaced. If there are any event handlers in the content being replaced,
you should stick with .html(), or if you just need this event handler cleanup but don’t
need the other HTML cleanup, you could possibly use $('#test').empty()
[0].innerHTML = myhtml; to get the event cleanup only.

The bottom line: if you know for sure that your code doesn’t require the event cleanup
or HTML cleanup that jQuery normally provides, then with caution you can
use .innerHTML directly. Otherwise, stick with .html() for safety.

5.15 Debugging? Break Those Chains
Problem
A chain of jQuery methods is failing somewhere along the way. The HTML code is as
follows:

<div class="foo">
 before

 test

118 | Chapter 5: Faster, Simpler, More Fun

 after
</div>

and the JavaScript code (part of a button click event handler) is as follows:

$('.foo').css({ fontsize: '18px' }).find('.bar').show();

But when you run the code, the font size isn’t set, and the hidden element isn’t shown.

You have Firebug or another JavaScript debugger, but it’s hard to trace through the
code. How can you tell where in the chain it is failing?

Solution
Break up the chain into individual statements, and store each jQuery object in a
variable:

// $('.foo').css({ fontsize: '18px' }).find('.bar').show();
var $foo = $('.foo');
$foo.css({ fontsize: '18px' });
var $bar = $foo.find('.bar');
$bar.show();

Now you have several debugging options. One is to use the Step Over command in the
debugger to single step over each statement and observe your variables and the state
of the page after each step.

In this code, you’d want to check $foo and $bar after their values are assigned. What
is the value of the .length property of each? That tells you how many DOM elements
were selected. Does each object contain the DOM elements you expect? Check the [0],
[1], [2], etc., properties to see the DOM elements.

Assuming that $foo contains the correct DOM elements, what happens after
the .css() method is called? With Firebug’s CSS Inspector, you’ll find that the CSS
font-size property is unchanged after the method call. Wait a minute! It’s font-size,
not fontsize? There’s the problem. Checking the docs, you find that the correct way
to write this is either of these:

$foo.css({ fontSize: '18px' });

$foo.css({ 'font-size': '18px' });

That’s one problem down, but what about the other one? After $bar is assigned, if we
look at its .length property, we’ll see that it is zero. This tells us that we didn’t succeed
in selecting any elements. A look at the HTML and JavaScript code will then reveal that
we simply misspelled the class name.

Now we can incorporate these two fixes back in the original chain:

$('.foo').css({ fontSize: '18px' }).find('.baz').show();

Another alternative is to use Firebug’s logging statements:

// $('.foo').css({ fontsize: '18px' }).find('.bar').show();
var $foo = $('.foo');

5.15 Debugging? Break Those Chains | 119

console.log($foo);
$foo.css({ fontsize: '18px' });
console.log($foo.css('fontsize'));
var $bar = $foo.find('.bar');
console.log($bar);
$bar.show();

These console.log() calls will reveal that $bar doesn’t have any elements selected,
although we’ve fallen into a trap on the call that attempts to log the font size: we
misspelled fontSize in the console.log() call as well!

This is where combining multiple debugging techniques helps: log those variables, use
Firebug’s inspectors, read and reread your source code, and have someone else look at
the problem too.

Discussion
jQuery’s chaining helps make it easy to write concise code, but it can get in the way
when debugging, because it is hard to step through the individual steps of the chain
and see their results. Breaking up the chain into individual statements, even on a tem-
porary basis while debugging, makes this task easier.

5.16 Is It a jQuery Bug?
Problem
You’re calling some jQuery code to show a hidden element and set its HTML content
after a time delay using setTimeout():

function delayLog(text) {
 setTimeout("$('#log').show().html(text)", 1000);
}
// ... and somewhere else in the code ...
delayLog('Hello');

The .show() call works, but the .html(text) call fails. The Firebug console reports that
the text variable is undefined. The same jQuery code works when you don’t call it from
setTimeout(). Is there a problem using jQuery with setTimeout()?

Solution
One way to find out whether jQuery is the source of a problem is to replace your jQuery
code with other JavaScript code that doesn’t use jQuery. In this example, we can replace
the jQuery code with a simple alert():

function delayLog(text) {
 setTimeout("alert(text)", 1000);
}

120 | Chapter 5: Faster, Simpler, More Fun

When we try this version of the code, the same problem occurs: there is no alert, and
Firebug again reports that text is undefined.

This doesn’t identify the problem, but it narrows it down a lot. It clearly isn’t jQuery
(unless the mere presence of the jQuery library is interfering with your page, but you
can rule that out by running the code in a simple test page that doesn’t include jQuery).
So, it must be something wrong with this code itself, most likely to do with the way
we’re using setTimeout().

Indeed, the problem here is that when a string argument is passed to setTimeout(), it
is executed in the global scope, i.e., as if the code were located outside of any function.
The easiest way to fix it is to use a local function for the callback instead of a text string:

function delayLog(text) {
 setTimeout(function() {
 alert(text);
 }, 1000);
}

Unlike code in a string, a nested function has full access to the outer function’s variables
and parameters. So, this code will alert the text as expected.

And finally, here is a corrected version of the original jQuery code:

function delayLog(text) {
 setTimeout(function() {
 $('#log').show().html(text);
 }, 1000);
}

Discussion
When debugging, if you aren’t sure what is causing a problem, finding out where the
problem isn’t can help you track it down. The purpose of this recipe isn’t to help you
troubleshoot setTimeout() problems—after all, this is a jQuery book, not a general
JavaScript book—but to help you focus your debugging efforts by quickly ruling out
(or confirming!) jQuery as the source of the problem.

5.17 Tracing into jQuery
Problem 1
You’re using the Step Into feature in Firebug or another JavaScript debugger to try to
step through the jQuery code to see what it actually does when you make a jQuery call.
But when you step into the jQuery code, it’s all mashed into one long, unreadable line
of code and you can’t step through it:

(function(){var l=this,g,y=l.jQuery,p=l.$,o=l.jQuery=l.$=function(E,F)...

5.17 Tracing into jQuery | 121

Solution 1
You’re using the minified version of jQuery. Instead, load the uncompressed version of
jQuery into your page for testing.

If you are loading the code from the Google Ajax Libraries API with a <script> tag,
change it like this:

<!-- Comment out the minified jQuery -->
<!--
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js
"></script>
-->
<!-- Use the uncompressed version for testing -->
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js"></script>

If you’re using Google’s JavaScript loader, change it like this:

// Comment out the minified jQuery
// google.load('jquery', '1.3.2');
// Use the uncompressed version for testing
google.load('jquery', '1.3.2', { uncompressed:true });

Now you will be able to step into and through the jQuery code.

Problem 2
Having fixed that problem, you want to learn how jQuery’s .html() and .show() meth-
ods work. So, you are trying to trace into this code in the debugger:

$('#test').html('test').show();

But when you use the Step Into command, the debugger goes into the jQuery con-
structor instead of either of the methods that you’re interested in.

Solution 2
The previous line of code contains three function calls: a call to the jQuery ($) con-
structor followed by calls to the .html() and .show() methods. The Step Into command
steps into the first of those calls, the constructor.

At that point you can immediately do a Step Out followed by another Step In. This
steps you out of the jQuery constructor (thus putting you back in the middle of the
original line of code) and then into the .html() method.

To get to the .show() method, use another pair of Step Out and Step In commands.
Each time you do this, you’ll work your way one step further through the jQuery chain.

If this gets tedious, break the chain as described in Recipe 5.15, and add debugger;
statements wherever you want to stop. If you want to trace into the .show() method,
you can change the code to the following:

122 | Chapter 5: Faster, Simpler, More Fun

var $test = $('#test');
$test.html('test');
debugger;
$test.show();

Now when the code stops on the debugger; statement, you can just use Step In (twice,
first to step to the $test.show(); statement and then to step into that function call).

You could use Step Over to step from the debugger; statement to the
next line, since after all you’re not yet stepping “into” anything, but it’s
easier to click Step In (or hit the F11 key in Windows) twice, and it works
just as well. Or, instead of the debugger; statement, you can set a break-
point on the $test.show() line itself, and then a single Step In will go
into the code for the .show() method.

Discussion
The minified version of jQuery is great for production use but not so good for devel-
opment. It collapses all of the code into one or two lines, making it nearly impossible
to step through the code in a debugger. Also, the common use of chained methods
makes it more difficult to step into jQuery methods. Using the tips in this recipe, you
can easily trace through the jQuery code in the debugger, whether to chase down a bug
or to learn how the code works.

Do not let your test-driven friends talk you out of using a debugger! Even
if you find most of your bugs through unit testing and other means, one
of the best ways to learn about a piece of code is to step through it in
the debugger and study its variables and properties as you go.

After all, as you read code, you have to step through it in your head and
form a mental model of what its variables contain. Why not let the
computer step through the code and show you what’s in those variables?

5.18 Making Fewer Server Requests
Problem
You’re including jQuery and a number of plugins in your page. The sheer number of
server requests is slowing down your page load time:

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="superfish.js"></script>
<script type="text/javascript" src="cycle.js"></script>
<script type="text/javascript" src="history.js"></script>
<script type="text/javascript" src="hoverintent.js"></script>
<script type="text/javascript" src="jcarousel.js"></script>

5.18 Making Fewer Server Requests | 123

<script type="text/javascript" src="thickbox.js"></script>
<script type="text/javascript" src="validate.js"></script>

After the page loads, you are downloading some JSON data using $.getJSON(), thus
adding yet another server request:

$(document).ready(function() {
 $.getJSON('myjson.php?q=test', function(json) {
 $('#demo').html(json.foo);
 });
});

myjson.php is a script on your server that returns JSON data like this:

{
 "foo": "bar"
}

Solution
Load jQuery from Google’s Ajax library, and combine all your plugins into a single file:

<script type="text/javascript"

 src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>

<script type="text/javascript" src="plugins.js">
</script>

Or, combine all of the JavaScript code you use most frequently (jQuery, plugins, and
your own code) into a single file:

<script type="text/javascript" src="allmyscripts.js"></script>

Either way, it also helps to minify the .js files (remove comments and extra whitespace)
to reduce their size. And make sure your server is using gzip compression on the files
it downloads.

For the JSON data, since this page is generated by your own server application, you
can “burn” the JSON data directly into the HTML page as it’s generated, using a
<script> tag:

<script type="text/javascript">
 var myJson = {
 "foo": "bar"
 };
</script>

The highlighted portion of that script tag is identical to the JSON data downloaded by
myjson.php in the original code. In most server languages it should be easy to include
the content in this way.

Now the jQuery code to use the JSON data is simply:

$(document).ready(function() {
 $('#demo').html(myJson.foo);
});

124 | Chapter 5: Faster, Simpler, More Fun

This eliminates one more server request.

Discussion
One of the keys to fast page loading is to simply minimize the number of HTTP requests.
Making requests to different servers can also help. Browsers will make only a small
number of simultaneous downloads from any single domain (or subdomain), but if you
download some of your files from a different domain, the browser may download them
in parallel as well.

Pointing different <script> tags to different domains may allow them to
be downloaded in parallel, but it doesn’t affect the order of execution.
<script> tags are executed in the order they appear in the HTML source.

You can combine JavaScript files by hand by simply copying and pasting them into one
big file. This is inconvenient for development but does speed up downloading.

There are a number of file combiner/minifiers available for various server languages.

Ruby on Rails:

• Bundle-fu

• AssetPackager

• The packager built into Rails 2.0

PHP:

• Minify

Python:

• JSCompile

Java:

• YUI Compressor

In addition to JavaScript code, check your CSS for multiple .css files. Some of the tools
listed can merge your .css files into a single download, just as they do for .js files.

At one time, “packing” JavaScript was all the rage. This not only re-
moves comments and whitespace but also rewrites all of the JavaScript
code so that it’s not even JavaScript code anymore. Packing requires an
unpacking step at runtime—every time the page loads, even if the Java-
Script code is already cached. Because of this, packing has fallen out of
favor, and “minifying” the code (removing comments and whitespace)
is recommended instead, combined with gzip compression. Much of
the benefit of packing comes from removing duplicate strings, and gzip
does that for you anyway.

5.18 Making Fewer Server Requests | 125

http://jquery-cookbook.com/go/bundle-fu
http://jquery-cookbook.com/go/asset-packager
http://jquery-cookbook.com/go/minify
http://jquery-cookbook.com/go/js-compile
http://jquery-cookbook.com/go/yui-compressor

5.19 Writing Unobtrusive JavaScript
Problem
You have a page with inline event handler attributes creating a hover effect for a menu.

Your content (HTML), presentation (CSS), and behavior (JavaScript) are all mixed up,
making it hard to maintain each on their own and resulting in duplicate JavaScript and
style settings:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta http-equiv="Content-Language" content="en-us" />
 <title>Menu Demo</title>

 <style type="text/css">
 .menu {
 background-color: #ccc;
 list-style: none;
 margin: 0;
 padding: 0;
 width: 10em;
 }
 .menu li {
 margin: 0;
 padding: 5px;
 }
 .menu a {
 color: #333;
 }
 </style>
</head>
<body>
<ul class="menu">
 <li onmouseover="this.style.backgroundColor='#999';"
 onmouseout="this.style.backgroundColor='transparent';">
 Download

 <li onmouseover="this.style.backgroundColor='#999';"
 onmouseout="this.style.backgroundColor='transparent';">
 Documentation

 <li onmouseover="this.style.backgroundColor='#999';"
 onmouseout="this.style.backgroundColor='transparent';">
 Tutorials

</body>
</html>

126 | Chapter 5: Faster, Simpler, More Fun

Solution
Replace inline JavaScript with jQuery event handlers, and add/remove classes instead
of manipulating the backgroundColor style directly:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta http-equiv="Content-Language" content="en-us" />
 <title>Menu Demo</title>

 <style type="text/css">
 .menu {
 background-color: #ccc;
 list-style: none;
 margin: 0;
 padding: 0;
 width: 10em;
 }
 .menu li {
 margin: 0;
 padding: 5px;
 }
 .menu a {
 color: #333;
 }
 .menuHover {
 background-color: #999;
 }
 </style>

 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js">
 </script>

 <script type="text/javascript">

 $(document).ready(function() {
 $('li').hover(
 function() {
 $(this).addClass('menuHover');
 },
 function() {
 $(this).removeClass('menuHover');
 });
 });

 </script>
</head>
<body>

<ul class="menu">
 Download

5.19 Writing Unobtrusive JavaScript | 127

 Documentation
 Tutorials

</body>
</html>

We’ve removed the inline event handlers and replaced them with jQuery event han-
dlers, separating the content and behavior. Now if we want to add more menu items,
we don’t have to copy and paste the same batch of event handlers; instead, the event
handler will automatically be added.

We have also moved the style rules for the hover effect into a CSS class, separating the
behavior and presentation. If we want to change the styling for the hover effect later,
we can just update the stylesheet instead of having to modify the markup.

Discussion
While an “all in one” HTML file with onevent attributes works fine in a small, simple
page, it doesn’t scale up very well. As your pages get more complex, separating pre-
sentation and behavior makes the code easier to maintain.

We didn’t do it in this simple example, but if you have multiple pages using the same
JavaScript or CSS code, move that code to a common .js or .css file. That way it will
be downloaded into the browser cache once, instead of being re-sent on every page
load. As a result, once one of your pages has been visited, the rest will load faster.

5.20 Using jQuery for Progressive Enhancement
Problem
You want to build a site that allows simple task management with a great user experi-
ence using animations and Ajax, but you also want to support users who have JavaScript
disabled.

Solution
You can build the site to work without all the flashiness and then unobtrusively add
the JavaScript functionality:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta http-equiv="Content-Language" content="en-us" />
 <title>Task List</title>

 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js">
 </script>

128 | Chapter 5: Faster, Simpler, More Fun

 <script type="text/javascript">

 $(document).ready(function() {
 var url = $('form').attr('action');
 $(':checkbox').click(function() {
 $.post(url, this.name + '=1');
 $(this).parent().slideUp(function() {
 $(this).remove();
 });
 });
 $(':submit').hide();
 });

 </script>
</head>
<body>
<form method="post" action="tasklist.html">

 <input type="checkbox" name="task1" id="task1" />
 <label for="task1">Learn jQuery</label>

 <input type="checkbox" name="task2" id="task2" />
 <label for="task2">Learn Progressive Enhancement</label>

 <input type="checkbox" name="task3" id="task3" />
 <label for="task3">Build Great Websites</label>

 <input type="submit" value="Mark Complete" />
</form>
</body>
</html>

The input form in this page doesn’t require JavaScript. The user checks off the tasks
he has completed and submits the form, and then it would be up to the server to load
a new page with the completed tasks removed from the list.

Now, we can progressively enhance the page using jQuery: we bind an event handler
to the checkboxes that mimics a standard form submit, by getting the submit URL for
the form and generating POST data showing that the checkbox was checked. Then we
animate the removal of the task to provide feedback to the user. We also hide the submit
button because marking tasks complete has become an instantaneous process.

Discussion
Although few people browse without JavaScript these days, it’s still a good practice
when possible to build your pages so they work fine without JavaScript and then use
jQuery and JavaScript to enhance them.

5.20 Using jQuery for Progressive Enhancement | 129

Beware that you don’t make the user experience worse with JavaScript
enhancements. The non-JavaScript version of this page may not give
immediate feedback when you check off a task, but it does give you a
way to change your mind easily if you make a mistake: either uncheck
it before submitting or just don’t submit the form at all.

If you “submit” each checkbox immediately when it’s clicked, be sure
you provide a way for your visitor to undo that action. If the task item
disappears from the page, people will be afraid to click for fear of clicking
the wrong item. You could either leave the item in the page but move it
to a “completed” section or add an explicit Undo option.

5.21 Making Your Pages Accessible
Problem
You’re building a web application with complex widgets and lots of Ajax functionality,
but you want to accommodate visitors with disabilities.

Solution
Add keyboard accessibility and Accessible Rich Internet Applications (ARIA) semantics
to your widgets. In the following code, the changes to support these features are indi-
cated in bold:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <meta http-equiv="Content-Language" content="en-us" />
 <title>Dialog Demo</title>

 <style type="text/css">
 table {
 border-collapse: collapse;
 width: 500px;
 }
 th, td {
 border: 1px solid #000;
 padding: 2px 5px;
 }
 .dialog {
 position: absolute;
 background-color: #fff;
 border: 1px solid #000;
 width: 400px;
 padding: 10px;
 }
 .dialog h1 {
 margin: 0 0 10px;
 }

130 | Chapter 5: Faster, Simpler, More Fun

 .dialog .close {
 position: absolute;
 top: 10px;
 right: 10px;
 }
 </style>

 <script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.js">
 </script>

 <script type="text/javascript">

 $(document).ready(function() {
 function close() {
 dialog.hide();
 $('#add-user').focus();
 }

 var title = $('<h1>Add User</h1>')
 .attr('id', 'add-user-title'),

 closeButton = $('<button>close</button>')
 .addClass('close')
 .click(close)
 .appendTo(title),

 content = $('<div/>')
 .load('add.html'),

 dialog = $('<div/>')
 .attr({
 role: 'dialog',
 'aria-labelledby': 'add-user-title'
 })
 .addClass('dialog')
 .keypress(function(event) {
 if (event.keyCode == 27) {
 close();
 }
 })
 .append(title)
 .append(content)
 .hide()
 .appendTo('body');

 $('#add-user').click(function() {
 var height = dialog.height(),
 width = dialog.width();

 dialog
 .css({
 top: ($(window).height() - height) / 2
 + $(document).scrollTop(),
 left: ($(window).width() - width) / 2

5.21 Making Your Pages Accessible | 131

 + $(document).scrollLeft()
 })
 .show();

 dialog.find('#username').focus();

 return false;
 });
 });

 </script>
</head>
<body>
<h1>Users</h1>
add a user
<table>
<thead>
 <tr>
 <th>User</th>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
</thead>
<tbody>
 <tr>
 <td>jsmith</td>
 <td>John</td>
 <td>Smith</td>
 </tr>
 <tr>
 <td>mrobertson</td>
 <td>Mike</td>
 <td>Robertson</td>
 </tr>
 <tr>
 <td>arodriguez</td>
 <td>Angela</td>
 <td>Rodriguez</td>
 </tr>
 <tr>
 <td>lsamseil</td>
 <td>Lee</td>
 <td>Samseil</td>
 </tr>
 <tr>
 <td>lweick</td>
 <td>Lauren</td>
 <td>Weick</td>
 </tr>
</tbody>
</table>
</body>
</html>

132 | Chapter 5: Faster, Simpler, More Fun

We’ve added several useful features with just a small amount of additional code:

• We added ARIA semantics (role and aria-labelledby) so that assistive technology
devices such as screen readers know that our <div> is a dialog and not just addi-
tional content on the page.

• We placed the keyboard focus in the dialog’s first input field when it opens. This
is helpful for all your visitors, sighted and nonsighted alike.

• We moved the keyboard focus back to the Add Users link when the dialog closes.

• We allowed the dialog to be canceled with the Escape key.

Discussion
ARIA is a work in progress, so browser and screen reader support for it is still limited.
But by adding it now, you’ll be better prepared for those visitors who can use it. And
improved keyboard access benefits all your visitors.

For more information about ARIA, see the following:

• WAI-ARIA Overview

• DHTML Style Guide

Don’t be thrown off by the old-school DHTML name; the DHTML Style
Guide is an up-to-date keyboard accessibility reference for all the latest
widgets.

5.21 Making Your Pages Accessible | 133

http://jquery-cookbook.com/go/aria-overview
http://jquery-cookbook.com/go/dhtml-style-guide

CHAPTER 6

Dimensions

Rebecca Murphey

6.0 Introduction
Dimensions are a core part of adding advanced behaviors to a website. Once you know
how to manipulate the dimensions of elements and their position on the page, you will
have a new level of control over your user interface, providing desktop-like behaviors
and interactions in your application.

6.1 Finding the Dimensions of the Window and Document
Problem
You want to get the width and height of the window and document in pixels.

Solution
jQuery’s width and height methods provide easy access to the basic dimensions of the
window or document:

jQuery(document).ready(function() {
 alert('Window height: ' + jQuery(window).height()); // returns the height of
the viewport
 alert('Window width: ' + jQuery(window).width()); // returns the width of the
viewport

 alert('Document height: ' + jQuery(document).height()); // returns the height
of the document
 alert('Document width: ' + jQuery(document).width()); // returns the width of
the document
});

135

Discussion
It’s important to understand that the width and height of the document can (and likely
will) be different from the width and height of the window. The dimensions of the
window refer to the size of the viewport—that portion of the browser that is available
for displaying a document. The dimensions of the document refer to the size of the
document itself. In most cases, the document height will be taller than the window’s
height. The document’s width will always be at least the window’s width but may be
greater than the window’s width. In Figure 6-1, jQuery('body').width() < jQuery(docu
ment).width(), and jQuery(document).width() == jQuery(window).width(). If the body
were wider than the window, the document width would increase accordingly.

Figure 6-1. The document size and the window size are often different

The width and height methods can also accept arguments if you want to set the
dimensions of an element. The argument can be provided as an integer—in which case
it will be interpreted as a pixel measurement—or as a string, in which case it is inter-
preted as a CSS-like measurement (i.e., $('#foo').width('300px')).

136 | Chapter 6: Dimensions

6.2 Finding the Dimensions of an Element
Problem
You want to determine the space occupied by an element.

Solution
The width and height methods can be applied to any element, and they are useful for
determining the computed width or height of an element. However, they fall short if
you need to determine the actual real estate that an element is occupying on the screen.
In addition to width and height, jQuery provides the following methods for determining
more specific dimensions of an element:

innerWidth
Returns the width excluding the border and including the padding

innerHeight
Returns the height excluding the border and including the padding

outerWidth
Returns the width including both the border and the padding

outerHeight
Returns the height including the border and including the padding

For a visual reference, see Figure 6-2.

Figure 6-2. Illustration of an element’s height, innerHeight, and outerHeight

6.2 Finding the Dimensions of an Element | 137

Given the following HTML:

<div id="results"></div>
<div id="myDiv">Some text.</div>

and the following CSS:

#myDiv {
 width:100px;
 height:30px;
 padding:10px;
 border:1px;
}

you could expect the following:

jQuery(document).ready(function() {
 var $myDiv = jQuery('#myDiv');
 var $results = jQuery('#results');

 jQuery('<p>Computed width: ' + $myDiv.width() + '</p>')
 .appendTo($results); // 100
 jQuery('<p>Computed height: ' + $myDiv.height() + '</p>')
 .appendTo($results); // 30
 jQuery('<p>Inner width: ' + $myDiv.innerWidth() + '</p>')
 .appendTo($results); // 120
 jQuery('<p>Inner height: ' + $myDiv.innerHeight() + '</p>')
 .appendTo($results); // 50
 jQuery('<p>Outer width: ' + $myDiv.outerWidth() + '</p>')
 .appendTo($results); // 122
 jQuery('<p>Outer height: ' + $myDiv.outerHeight() + '</p>')
 .appendTo($results); // 52

 jQuery('<p>Document outer height: ' + jQuery(document).outerHeight() + '</p>')
 .appendTo($results); // NaN
 jQuery('<p>Document inner height: ' + jQuery(document).innerHeight() + '</p>')
 .appendTo($results); // NaN
 jQuery('<p>Window outer height: ' + jQuery(window).outerHeight() + '</p>')
 .appendTo($results); // NaN
 jQuery('<p>Window inner height: ' + jQuery(window).innerHeight() + '</p>')
 .appendTo($results); // NaN
});

Discussion
The innerWidth/innerHeight and outerWidth/outerHeight methods are useful tools for
determining the actual dimension that you’re after—the basic width and height meth-
ods are of limited use when you are trying to measure the actual real estate that an
element with border and padding occupies on the screen.

Note that using innerWidth, innerHeight, outerWidth, or outerHeight methods on
jQuery(document) or jQuery(window) objects will return NaN.

138 | Chapter 6: Dimensions

6.3 Finding the Offset of an Element
Problem
You want to determine the location of an element in the document.

Solution
jQuery offers three methods that are useful in determining an element’s position:

offset
Returns an object containing the position of the top-left corner of the element
relative to the document’s top-left corner

position
Returns an object containing the position of the top-left corner of the element
relative to the top-left corner of the first positioned parent of the element (the
offsetParent)

offsetParent
Returns a jQuery object containing the offsetParent of the element

The offset method is useful for determining the location of an element on the page—
for example, if you want to scroll the window to an element. The position method is
useful for repositioning elements and for finding the position of an element in a scrolling
container. Both tasks will be discussed in subsequent sections; this section seeks to
serve as an overview to the positioning methods.

Given the following HTML where the <body> element has 0-pixel margin and 10-pixel
padding:

<body id="the_offset_parent">
 <h1>Finding the Offset of an Element</h1>
 <div id="foo">
 <div id="bar">Some text inside #bar, which is inside #foo</div>
 </div>

 <div id="results"></div>
</body>

you can use the following code to determine the position, offset, and offset parent of
the two DIVs:

jQuery(document).ready(function() {
 var $foo = jQuery('#foo');
 var $bar = jQuery('#bar');

 var $results = jQuery('#results');
 var fooPosition = $foo.position();
 var barPosition = $bar.position();
 var fooOffset = $foo.offset();
 var barOffset = $bar.offset();

6.3 Finding the Offset of an Element | 139

 var $fooOffsetParent = $foo.offsetParent();
 var $barOffsetParent = $bar.offsetParent();

 $results
 .append('<p>#foo position.top: ' + fooPosition.top + '</p>') // 10
 .append('<p>#foo position.left: ' + fooPosition.left + '</p>') // 10
 .append('<p>#bar position.top: ' + barPosition.top + '</p>') // 10
 .append('<p>#bar position.left: ' + barPosition.left + '</p>') // 10

 .append('<p>#foo offset.top: ' + fooOffset.top + '</p>') // 10
 .append('<p>#foo offset.left: ' + fooOffset.left + '</p>') // 10
 .append('<p>#bar offset.top: ' + barOffset.top + '</p>') // 10
 .append('<p>#bar offset.left: ' + barOffset.left + '</p>') // 10

 .append('<p>ID of #foo offsetParent: '
 + $fooOffsetParent.attr('id')) // the_offset_parent
 .append('<p>ID of #bar offsetParent: '
 + $barOffsetParent.attr('id')); // the_offset_parent
});

In this case, both elements have the same position, and both have the same
offsetParent (the document’s <body> element).

However, if #foo is positioned using CSS:

<body id="the_offset_parent">
 <div id="foo" style="position:absolute; top:10px; left:10px;">
 <div id="bar">Some text inside #bar, which is inside the
absolutely-positioned #foo</div>
 </div>

 <div id="results" style="position:absolute; top:60px; left:10px;"></div>
</body>

then the results change. The #foo DIV hasn’t actually moved and its offsetParent hasn’t
changed, so its position and offset stay the same; the #bar DIV hasn’t moved either, but
since its offsetParent has changed, its position has changed—remember, an element’s
position is relative to its offset parent.

jQuery(document).ready(function() {
 var $foo = jQuery('#foo');
 var $bar = jQuery('#bar');

 var $results = jQuery('#results');
 var fooPosition = $foo.position();
 var barPosition = $bar.position();
 var fooOffset = $foo.offset();
 var barOffset = $bar.offset();

 var $fooOffsetParent = $foo.offsetParent();
 var $barOffsetParent = $bar.offsetParent();

 $results
 .append('<p>#foo position.top: ' + fooPosition.top + '</p>') // 10
 .append('<p>#foo position.left: ' + fooPosition.left + '</p>') // 10

140 | Chapter 6: Dimensions

 .append('<p>#bar position.top: ' + barPosition.top + '</p>') // 0
 .append('<p>#bar position.left: ' + barPosition.left + '</p>') // 0

 .append('<p>#foo offset.top: ' + fooOffset.top + '</p>') // 10
 .append('<p>#foo offset.left: ' + fooOffset.left + '</p>') // 10
 .append('<p>#bar offset.top: ' + barOffset.top + '</p>') // 10
 .append('<p>#bar offset.left: ' + barOffset.left + '</p>') // 10

 .append('<p>ID of #foo offsetParent: '
 + $fooOffsetParent.attr('id')) // the_offset_parent
 .append('<p>ID of #bar offsetParent: '
 + $barOffsetParent.attr('id')); // foo
});

Discussion
The important thing to remember is this: the offset method will always give you an
element’s position relative to the document. The return value of the position method
may be the element’s position relative to the document, depending on whether the
element has an offsetParent. If the element has an offsetParent—that is, a parent
element that has positioning applied to it—then the position method will provide in-
formation about the position of the element relative to the offsetParent, not to the
document.

jQuery’s offsetParent method provides a replacement for the standard
JavaScript offsetParent DOM node property. In certain cases—such as
when an element has a fixed position—some browsers will return null
when asked for the offsetParent property of the element.

6.4 Scrolling an Element into View
Problem
You want to scroll the document or an element to bring another element into view.

Solution: Scrolling the Whole Window
If you need to scroll the whole window, you’ll use the offset method to determine
the location of the destination element relative to the document and then use the
scrollTop method to scroll the document to bring the element into view.

For example, let’s say you want to scroll to the #foo element when the user clicks the
#bar element:

jQuery('#bar').click(function() {
 var fooOffset = jQuery('#foo').offset(),
 destination = fooOffset.top;
 jQuery(document).scrollTop(destination);
});

6.4 Scrolling an Element into View | 141

Solution: Scrolling Inside an Element
If your destination element is inside a scrolling container, you’ll use the position meth-
od to determine the location of the destination element relative to the container, add
it to the current scroll position of the container, and then use the scrollTop method to
scroll the container to bring the element into view. Note that the scrolling container
must be positioned—using position: relative, position: absolute, or position:
fixed—in order for this to work.

For example, consider the following markup, styled so that #foo is not large enough to
show both paragraphs at once.

<head>
 <style>
 #foo {
 width:300px;
 padding:10px;
 height:20px;
 border:1px solid black;
 overflow:auto;
 position:relative;
 }
 </style>
</head>
<body>
 <input type="button" id="bar" value="Click to scroll to last paragraph" />
 <input type="button" id="bam" value="Click to scroll to last paragraph with
animation" />
 <div id="foo">
 <p>This is the first paragraph. Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.</p>
 <p>This is the second paragraph. Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim
id est laborum.</p>
 <!-- several more paragraphs -->
 </div>
</body>

Scrolling #foo to show the last paragraph is simple:

var $foo = jQuery('#foo');
$('#bar').click(function() {
 var lastParagraphPosition = jQuery('#foo p:last').position();
 var scrollPosition = $foo.scrollTop() + lastParagraphPosition.top;
 $foo.scrollTop(scrollPosition);
});

142 | Chapter 6: Dimensions

In both of these examples, the scrolling happens instantaneously—efficient, but not
necessarily attractive. The animate method will animate an element’s scrollTop prop-
erty, so animating the transition is trivial. Here’s how we would do it for the scrolling
container:

var $foo = jQuery('#foo');
$('#bam').click(function() {
 var lastParagraphPosition = jQuery('#foo p:last').position();
 var scrollPosition = $foo.scrollTop() + lastParagraphPosition.top;
 jQuery('#foo').animate({scrollTop: scrollPosition}, 300);
});

jQuery also includes a scrollLeft method, with behavior analogous to
scrollTop.

6.5 Determining Whether an Element Is Within the Viewport
Problem
You want to determine whether an element is visible within the viewport; further, you
want to determine the percentage of the element that is visible and scroll to it if it is
less than 50 percent visible.

Solution
This makes use of several of the methods discussed in earlier sections of this chapter.

There are several steps to this process:

1. Determine the size of the viewport.

2. Determine the scroll position of the document.

3. Figure out the minimum and maximum values for the top and left positions of the
element if the element is visible.

4. Test the position of the element against those values.

jQuery(document).ready(function() {
 var viewportWidth = jQuery(window).width(),
 viewportHeight = jQuery(window).height(),

 documentScrollTop = jQuery(document).scrollTop(),
 documentScrollLeft = jQuery(document).scrollLeft(),

 minTop = documentScrollTop,
 maxTop = documentScrollTop + viewportHeight,
 minLeft = documentScrollLeft,
 maxLeft = documentScrollLeft + viewportWidth,

6.5 Determining Whether an Element Is Within the Viewport | 143

 $myElement = jQuery('#myElement'),
 elementOffset = $myElement.offset();
 if (
 (elementOffset.top > minTop && elementOffset.top < maxTop) &&
 (elementOffset.left > minLeft &&elementOffset.left < maxLeft)
) {
 alert('element is visible');
 } else {
 alert('element is not visible');
 }
});

With this solution, we know whether the top of the element is visible in the viewport;
a better solution would test whether the entire element was contained in the viewport:

jQuery(document).ready(function() {
 var viewportWidth = jQuery(window).width(),
 viewportHeight = jQuery(window).height(),
 documentScrollTop = jQuery(document).scrollTop(),
 documentScrollLeft = jQuery(document).scrollLeft(),

 $myElement = jQuery('#myElement'),

 elementOffset = $myElement.offset(),
 elementHeight = $myElement.height(),
 elementWidth = $myElement.width(),

 minTop = documentScrollTop,
 maxTop = documentScrollTop + viewportHeight,
 minLeft = documentScrollLeft,
 maxLeft = documentScrollLeft + viewportWidth;

 if (
 (elementOffset.top > minTop && elementOffset.top + elementHeight < maxTop) &&
 (elementOffset.left > minLeft && elementOffset.left + elementWidth < maxLeft)
) {
 alert('entire element is visible');
 } else {
 alert('entire element is not visible');
 }
});

Alternatively, we could look at how much of the element is visible—if it is less than a
certain amount, then we can scroll to the element:

jQuery(document).ready(function() {

var viewportWidth = jQuery(window).width(),
 viewportHeight = jQuery(window).height(),

 documentScrollTop = jQuery(document).scrollTop(),
 documentScrollLeft = jQuery(document).scrollLeft(),

 $myElement = jQuery('#myElement'),

 verticalVisible, horizontalVisible,

144 | Chapter 6: Dimensions

 elementOffset = $myElement.offset(),
 elementHeight = $myElement.height(),
 elementWidth = $myElement.width(),

 minTop = documentScrollTop,
 maxTop = documentScrollTop + viewportHeight,
 minLeft = documentScrollLeft,
 maxLeft = documentScrollLeft + viewportWidth;

function scrollToPosition(position) {
 jQuery('html,body').animate({
 scrollTop : position.top,
 scrollLeft : position.left
 }, 300);
}

if (
 ((elementOffset.top > minTop && elementOffset.top < maxTop) ||
 (elementOffset.top + elementHeight > minTop && elementOffset.top +
elementHeight < maxTop))
&&
 ((elementOffset.left > minLeft && elementOffset.left < maxLeft) ||
 (elementOffset.left + elementWidth > minLeft && elementOffset.left +
elementWidth < maxLeft))
) {
 alert('some portion of the element is visible');

 if (elementOffset.top >= minTop && elementOffset.top + elementHeight
<= maxTop) {
 verticalVisible = elementHeight;
 } else if (elementOffset.top < minTop) {
 verticalVisible = elementHeight - (minTop - elementOffset.top);
 } else {
 verticalVisible = maxTop - elementOffset.top;
 }

 if (elementOffset.left >= minLeft && elementOffset.left + elementWidth
<= maxLeft) {
 horizontalVisible = elementWidth;
 } else if (elementOffset.left < minLeft) {
 horizontalVisible = elementWidth - (minLeft - elementOffset.left);
 } else {
 horizontalVisible = maxLeft - elementOffset.left;
 }

 var percentVerticalVisible = (verticalVisible / elementHeight) * 100;
 var percentHorizontalVisible = (horizontalVisible / elementWidth) * 100;

 if (percentVerticalVisible < 50 || percentHorizontalVisible < 50) {
 alert('less than 50% of element visible; scrolling');
 scrollToPosition(elementOffset);
 } else {
 alert('enough of the element is visible that there is no need to scroll');
 }

6.5 Determining Whether an Element Is Within the Viewport | 145

} else {
 // element is not visible; scroll to it
 alert('element is not visible; scrolling');
 scrollToPosition(elementOffset);
}

});

The scrollTo plugin by Ariel Flesler provides excellent shorthand access
to many of these methods by allowing you to simply write
$.scrollTo('#myElement'); it takes care of determining the position of
the destination element.

6.6 Centering an Element Within the Viewport
Problem
You want to scroll the window to center an element within the viewport.

Solution
Get the viewport’s dimensions; determine the width, height, and offset of the element;
and use a little math to center the element in the viewport:

jQuery(document).ready(function() {
 jQuery('#bar').click(function() {
 var viewportWidth = jQuery(window).width(),
 viewportHeight = jQuery(window).height(),

 $foo = jQuery('#foo'),
 elWidth = $foo.width(),
 elHeight = $foo.height(),
 elOffset = $foo.offset();

 jQuery(window)
 .scrollTop(elOffset.top + (elHeight/2) - (viewportHeight/2))
 .scrollLeft(elOffset.left + (elWidth/2) - (viewportWidth/2));
 });
});

In the final lines, we add the top offset of the element to half the element’s height in
order to determine the vertical center of the element. Then we subtract half the view-
port’s height to determine the position to which we want the window to scroll. Finally,
we do an analogous calculation to center the viewport horizontally.

146 | Chapter 6: Dimensions

http://jquery-cookbook.com/go/plugin-scrollto

6.7 Absolutely Positioning an Element at Its Current Position
Problem
You want to turn a static or relatively positioned element into being absolutely
positioned.

Solution
To accomplish this, we simply get the position of the element and then use it to set the
element’s CSS properties accordingly:

var $myElement = jQuery('#foo p').eq(0),
 elPosition = $myElement.position();

 $myElement.css({
 position : 'absolute',
 top : elPosition.top,
 left : elPosition.left
 });

We can also easily reposition an element relative to its current position:

var $myElement = jQuery('#foo p').eq(1),
 elPosition = $myElement.position();

 $myElement.css({
 position : 'absolute',
 top : elPosition.top + 20,
 left : elPosition.left + 20
 });

6.8 Positioning an Element Relative to Another Element
Problem
You want to position a new element relative to an existing element.

Solution
Get the width, height, and offset of the existing element, and use the values to position
the new element accordingly.

Given the following HTML:

<style>
#foo {
 width: 300px;
 height: 100px;
 border: 1px solid red;
 padding: 5px;
}

6.8 Positioning an Element Relative to Another Element | 147

#tooltip {
 border: 1px solid black;
 padding: 5px;
 background-color: #fff;
</style>

<div id="foo">An existing element</div>

the following code would add an element as a sibling to the existing element but posi-
tioned “inside” the element, 10 pixels from the top and 10 pixels from the left of the
existing element’s top-left corner, and with a width 20 pixels less than that of the
existing element:

jQuery(document).ready(function() {
 var $foo = jQuery('#foo'),
 fooPosition = $foo.position(),
 $tooltip = $('<div id="tooltip">A new element</div>').insertAfter($foo);

 $tooltip.css({
 position : 'absolute',
 top : fooPosition.top + 10,
 left : fooPosition.left + 10,
 width : $foo.width() - 20
 });
});

If you wanted to add the new element somewhere else in the page—that is, if you didn’t
want it to be a sibling of the existing element—you could adjust your code to look at
the offset of the original element rather than the position:

jQuery(document).ready(function() {
 var $foo = jQuery('#foo'),
 fooOffset = $foo.offset(),
 $tooltip = $('<div id="tooltip">A new element</div>').appendTo('body');

 $tooltip.css({
 position : 'absolute',
 top : fooOffset.top + 10,
 left : fooOffset.left + ($foo.width() / 2),
 width : $foo.width() - 20
 });
});

6.9 Switching Stylesheets Based on Browser Width
Problem
You want to change the document’s CSS based on the width of the browser.

148 | Chapter 6: Dimensions

Solutions
There are a few solutions to this problem. One changes the class attribute of the body
element, another changes the href attribute of the stylesheet you want to change, and
the third includes all size-related stylesheets on the page but enables only one of them
at a time.

In each case, we’ll create a function that checks the width of the browser and bind that
function to the document’s ready event and to the window’s resize event. The
checkWidth function will then call the setSize function, which we’ll define based on the
approach we’re taking:

var checkWidth = function() {
 var browserWidth = $(window).width();
 if (browserWidth < 960) {
 setSize('small');
 } else {
 setSize('large');
 }
};

jQuery(document).ready(function() {
 checkWidth();
 $(window).resize(checkWidth);
});

The definition of the setSize function depends on how you want to switch styles.

Solution 1: Changing the Class on the Body Element
var setSize = function(size) {
 var $body = jQuery('body');
 jQuery('body').removeClass('large small').addClass(size);
};

Solution 2: Changing the href Attribute of the Stylesheet That’s Responsible
for Size-Related Styling
Let’s assume you have the following size-related stylesheet in your document:

<link rel="stylesheet" type="text/css" id="css_size" href="size-small.css" />

In this case, you would define the setSize function as follows:

var setSize = function(size) {
 var $css = jQuery('#css_size');
 $css.attr('href', 'size-' + size + '.css');
};

Note that in this case, the new CSS file is requested from the server, which is likely to
cause a brief delay in the style change occurring. For this reason, this is perhaps the
least-preferable method.

6.9 Switching Stylesheets Based on Browser Width | 149

Solution 3: Include All Size-Related Stylesheets in the Page, but Enable Only
One at a Time

<link rel="stylesheet" type="text/css" class="css_size small" href="size-small.css" />
<link rel="alternate stylesheet" type="text/css" class="css_size large"
 href="size-large.css" disabled=true/>

In this case, you would define the setSize function as follows:

var setSize = function(size) {

 jQuery('link.css_size').each(function() {
 var $this = $(this);
 if ($this.hasClass(size)) {
 $this
 .removeAttr('disabled')
 .attr('rel', 'stylesheet');
 } else {
 $this
 .attr('disabled', true)
 .attr('rel', 'alternate stylesheet');
 }
 });
};

In this approach, all stylesheets are loaded at page load, and nothing new is fetched
when switching from one stylesheet to another. This eliminates the delay caused by
solution 2 but it also results in potentially unnecessary HTTP requests if your user is
unlikely to need the alternate stylesheets.

Discussion
There is no definitive answer to which of the three style-switching methods is the best.
When choosing a method, you’ll want to consider how likely your users are to need a
different stylesheet, how big your size-related stylesheets are, and how you prefer to
manage your size-related styles. In many cases, the method from the first solution will
be both sufficient and preferable.

150 | Chapter 6: Dimensions

CHAPTER 7

Effects

Remy Sharp

7.0 Introduction
Out of the box, jQuery comes with a number of preset effects and the robust low-level
animation method for creating your own custom effects.

The preset effects include the following:

• Hiding and showing elements in a toggle fashion

• Scaling and simultaneously fading elements in and out of view

• Sliding up and down and toggling

• Fading in and out and to a specific opacity

All of the preset effects support speeds and callback functions to trigger upon
completion.

In addition to these predefined effects, there are also a number of utilities that can help
you take more control over your animations:

• :animated selector to assess whether an element is in the process of being animated

• The ability to turn off and on all effects across the board

• The ability to add to the animation queue with your own bespoke functions

• Function to change the entire queue of animations

It’s worth noting that the canned animation methods, hide (with a du-
ration) and slideUp, reduce the margin and padding on the element as
they approach zero height. This may affect how you want to mark up
the page and CSS for your effect. Also note that jQuery doesn’t official-
ly support effects in documents using QuirksMode.

151

Animate Method
Using the animate method gives you complete control over the animation to roll your
own bespoke effect. Using the animate method, you can do the following:

• Control CSS properties (limited to numerical properties only)

• Control scrollTop and scrollLeft DOM properties (if the element has overflow)

• Use any CSS unit of measure, e.g., pixels, ems, inches, or percentages for the end
point values

• Specify the end point of the effect as a fixed value or a relative value from the
element’s current state

• Use toggle as a value to flip between states, e.g., opacity: toggle

• Specify an easing method to run the animation over

• Set callbacks at all points of the animation: on each step of the animation and when
it finishes

• Specify whether the animation should queue or run immediately allowing for
simultaneous animations

When specifying properties to animate, they must be written using
camel case, e.g. marginLeft rather than margin-left. If you don’t do it
this way, nothing will animate!

Animation Speeds
The speed parameter can be specified using either milliseconds or a few predefined
strings:

• slow has a value of 600 milliseconds.

• fast has a value of 200 milliseconds.

If a speed isn’t explicitly passed in to the animation functions, the animation will run
at a default speed of 400 milliseconds.

If you explicitly pass in a speed of zero, then the animation will run like
the .css() function, but as of jQuery 1.3, the method call will run syn-
chronously rather than asynchronously like all other animations would
do.

Effects Template
Unless otherwise stated in the recipe, we will use the following template for all the
examples, applying a different jQuery snippet for each solution:

152 | Chapter 7: Effects

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Chapter 6</title>
 <link rel="stylesheet" href="chapter6.css" type="text/css" />
 <script src="jquery-latest.js" type="text/javascript"></script>
</head>
<body id="single">
 <input type="button" id="animate" value="animate" />
 <div class="box">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.</p>
 </div>
</body>
</html>

All the individual examples are available online at http://jquery-cookbook.com/exam
ples/06/, including a complete amalgamated version of the recipes.

7.1 Sliding and Fading Elements in and out of View
Problem
We want to reveal or toggle a block of content into view. This can be triggered by the
user clicking some element or can be fired by some other event.

Rather than just showing and hiding, which could be jarring visually, we want to create
a gradual effect to reveal the content into view.

For these solutions, I’ve assumed we want to allow the user to toggle the effect.

Solution
For reference, if we were just to show the element, our code would be as follows:

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').show();
 });
);

If we were to toggle the box but just toggle from visible and hidden, we would use the
following instead of .show():

$('.box').toggle();

However, our solution wants to be a little more visually engaging than just toggling the
display property. So, let’s look at using the slide and fade methods:

7.1 Sliding and Fading Elements in and out of View | 153

http://jquery-cookbook.com/examples/06/
http://jquery-cookbook.com/examples/06/

Slide
$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').slideToggle('slow');
 });
});

Fade

Because there’s no opacity toggle function, either we can use a combination of
fadeIn and fadeOut:

$(document).ready(function () {
 $('#animate').click(function () {
 var $box = $('.box');
 if ($box.is(':visible')) {
 $box.fadeOut('slow');
 } else {
 $box.fadeIn('slow');
 }
 });
});

or we can create our own fade toggle animation, using the fadeTo method:

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').fadeTo('slow', 'toggle');
 });
});

However, I’m of the opinion that it reads better for future maintenance if we use the
animate method:

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').animate({ opacity : 'toggle' }, 'slow');
 });
});

Both

If we want to toggle the height and opacity together, we can reuse the previous
solution and add the height to toggle at the same time. This would cause the box to
fade out and slide up at the same time:

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').animate({
 opacity : 'toggle',
 height: 'toggle'
 }, 'slow');
 });
});

154 | Chapter 7: Effects

Discussion
As we can see from the previous solutions, the slide and fade methods are the next step
up from the straight show (and hide) and toggle methods. The slide methods come in
the following flavors:

• slideUp

• slideDown

• slideToggle

The fade methods don’t have an explicit toggle feature, but it can be achieved. Fading
has the following methods:

• fadeIn

• fadeOut

• fadeTo

With the exception of fadeTo, all these methods take speed as the first parameter and
a callback function as the second—both of which are optional. The callback function
is executed once the animation is complete, and the context is set to the element the
animation ran against; i.e., the this variable is the current element.

The reason I would choose to use animate over fadeTo to toggle opacity is that the
fadeTo parameters read the wrong way around. If a new developer were coming to the
code, using the animate function almost reads as plain English, therefore making it
easier to skim and understand what is happening in the code.

It’s worth also adding that if you use the show (or hide) method using a speed, it will
animate the height, width, opacity, margin, and padding all in one animation, as shown
in Figure 7-1.

Figure 7-1. Passing a speed in to the show method animates height, width, padding, margin, and
opacity

7.1 Sliding and Fading Elements in and out of View | 155

7.2 Making Elements Visible by Sliding Them Up
Problem
You want to slide the content block into view, but the UI design dictates that the content
must slide upward when being revealed. The slideUp method would hide the element,
reducing the height from the top position.

To slide upward, we need to use CSS to position the element and then consider the
content that we are revealing.

Solution

HTML

We need to absolutely position the element we are animating to get it to stick to the
bottom position so it can animate upward when revealing.

To achieve this, we need to wrap the animating element in another <div> (or the element
that suits your design) and give it a position: relative style. (This may also be
position: absolute. We just need a defined position to trigger the position: abso
lute on #revealUp to position relatively to; however, since we want the document to
flow normally, we’ve used position: relative.)

<div class="box">
 <div id="revealUp">
 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.</p>
 </div>
</div>

CSS

Now we need to give the box element a relative position so that we can absolutely
position #revealUp relative to it:

.box {
 position: relative;
}

#revealUp {
 position: absolute;
 overflow: hidden;
 display: none;
 bottom: 0;
 background-color: #c00;
 height: 0;
}

156 | Chapter 7: Effects

jQuery

We can toggle the #revealUp based on the element’s height. We’re going to longer
lengths to animate the height upward (by checking the current height) rather than just
using slideToggle()—but we’ll look at why in the discussion:

$(document).ready(function () {
 $('#animate').click(function () {
 var $box = $('#revealUp');

 if ($box.height() > 0) {
 $box.animate({ height : 0 });
 } else {
 $box.animate({ height : '100%' });
 }
 });
});

Discussion
This solution requires that we check the height of the box to then determine how we
proceed.

Notice how we don’t use slideToggle, which behind the scenes is very similar, if not
the same as, using .animate({ height: 'toggle' }).

The reason we’re not using the toggle is that for the toggle to work correctly, it needs
to capture the real height from somewhere. As the element starts with a height of zero,
jQuery has no way to work out what the full height is. If we used slideToggle, the
#revealUp element appears briefly as a 1-pixel slither and then disappears again. This
is because there’s no real height to animate to.

Instead, we determine whether the height is great than zero and then animate the
height accordingly. Since the element is nested within another element with
position: relative, we can give it a height of 100 percent, and it will grow to fill the
space.

In the recipe, I have used overflow: hidden. However, if the font size is
increased by the user, my example hides some of the content. In your
real solutions, make sure you test that the content is still available when
the font size is increased, and consider either ensuring that the revealing
box is large enough for the content or using overflow: auto on the
#revealUp element.

7.3 Creating a Horizontal Accordion
Problem
The jQuery UI library supports vertical accordions out of the box, and in fact there are
a few simple code snippets that can be used to create a rudimentary accordion effect.

7.3 Creating a Horizontal Accordion | 157

However, making the accordion run horizontally requires specific CSS and a slightly
different take on the jQuery code.

For this solution we won’t be using the template, because the markup is different for
the horizontal accordion.

Solution

HTML
<div id="accordionWrapper">
 <h3 class="red">Red</h3>
 <div id="red" class="box"><p>Lorem ipsum dolor sit amet, consectetur
adipisicing.</p></div>

 <h3 class="green">Green</h3>
 <div id="green" class="box"><p>Lorem ipsum dolor sit amet, consectetur
adipisicing.</p></div>

 <h3 class="blue">Blue</h3>
 <div id="blue" class="box"><p>Lorem ipsum dolor sit amet, consectetur
adipisicing.</p></div>
</div>

CSS
#accordionWrapper {
 margin: 10px;
}

#accordionWrapper h3 a {
 text-indent: -9999px;
 height: 150px;
 width: 50px;
 float: left;
}

#accordionWrapper .red {
 background: #c00 url(images/red.png) no-repeat;
}

#accordionWrapper .green {
 background: #0c0 url(images/green.png) no-repeat;
}

#accordionWrapper .blue {
 background: #00c url(images/blue.png) no-repeat;
}

#accordionWrapper div.box {
 float: left;
 height: 150px;
 width: 150px;
 border: 0;

158 | Chapter 7: Effects

 margin: 0;

 /* to cancel the image from .red, etc */
 background-image: none;
}

jQuery
$.fn.horizontalAccordion = function (speed) {
 return this.each(function () {
 var $accordionHeaders = $(this).find('h3'),
 $open = $accordionHeaders.next().filter(':first'),
 width = $open.outerWidth();

 // initialize the display
 $accordionHeaders.next().filter(':not(:first)').css({ display : 'none', width : 0
});

 $accordionHeaders.click(function () {
 if ($open.prev().get(0) == this) {
 return;
 }
 $open.animate({ width: 0 }, { duration : speed });
 $open = $(this).next().animate({ width : width }, { duration : speed });
 });
 });
};

$(document).ready(function () {
 $('#accordionWrapper').horizontalAccordion(200);
});

Discussion
The HTML and CSS lay the accordion out so that the elements within it are all floated
to the left. If you used this on a web page, you would probably expect to have to add
a clearing element directly after the accordion to allow the following content to flow
properly.

By floating the elements to the left, our accordion is set up with the h3 > a as the title
to the content panel.

If CSS and JavaScript are disabled, then the content flows correctly and is readable by,
for instance, Google’s search engine.

If CSS is turned on but JavaScript isn’t, the default view is to see all the content panels.

Using jQuery, we initialize the display by hiding all the panels except the first, and we
hook click handlers to the headers to slide the content in and out of view.

The horizontal accordion has been written as a jQuery plugin, in particular to show
that we don’t need to hard-code any variables within the accordion effect. We only

7.3 Creating a Horizontal Accordion | 159

pass the duration speed variable in to the plugin, which determines the duration of the
effect. We could easily upgrade this plugin to also take an easing or callback.

It’s important to note that throughout this code, all the click handling and navigation
of the DOM happens around the <h3> element, not the <a> element. This still works,
keeping the code relatively simple (instead of having to navigate up and down from the
<a> element to get the parent <h3> then the adjacent <div> element), but more impor-
tantly, offers keyboard accessibility because the <a> elements can be tabbed on to and
triggered via the keyboard. We don’t have to bind the click handler to the <a> element,
because when the <a> element has the click event triggered (via clicking or the key-
board), it bubbles up through the DOM and is caught by our click handler on the
<h3> element.

The plugin first collects the necessary parts of the accordion: the header, which will be
clickable; the first visible panel, and the width of the panels (note that this version of
the plugin works only for equal sized panels):

var $accordionHeaders = $(this).find('h3'),

this is the current accordion wrapper element, typically a <div>.

From the accordion wrapper, our code collects all the <h3> elements. Note that we will
make use of next() and prev() to change our DOM collection from the <h3> to the next
nodes in the DOM tree, in particular the accordion content panels:

$open = $accordionHeaders.next().filter(':first'),

$open is a temporary variable that will point to the current visible panel. We can’t
use .is(':visible') because we’re actually reducing the width and the panel still has
a CSS property of display: block. So, we will keep track of the current panel through
this $open variable:

width = $open.outerWidth();

Finally in the initialization, we capture the width of the open panel so that we can
animate the width of the panels correctly.

Two tasks are left:

• Initialize the view of panels, showing only the first panel

• Bind the click handles to show and hide the panels

To initialize the view, we must hide all the panels except the first. We must also set the
width to zero to allow for the animate function to increase the width, rather than making
it pop out when it is shown.

To achieve this, we use an inverse filter from the $open variable, in particu-
lar :not(:first):

$accordionHeaders.next().filter(':not(:first)').css({ display : 'none', width : 0 });

160 | Chapter 7: Effects

Once we have our selection of panels that are not the first, we change the CSS properties
to initialize them.

Finally, we attach the click handler.

Remembering that the $accordionHeaders variable contains the h3 elements, the first
thing we do is say this: if the <h3> clicked is the same as the currently open panel, then
don’t do anything.

Since the $open variable is the panel, we use .prev() to navigate to the previous <h3>
element and test whether it matches the current context of the clicked element.

If the clicked element is not the current open panel, we animate the $open panel width
to zero, and the current clicked panel to the captured width.

Notice the very last line of the click handler:

$open = $(this).next().animate({ width : width }, { duration : speed });

Because jQuery usually returns jQuery (except when getting a value) and we’re ani-
mating the panel that will now be open, we can capture this at the same time in the
$open variable, thus overwriting it with the latest panel.

7.4 Simultaneously Sliding and Fading Elements
When some part of the web page is hidden and is shown to the user only on a specific
action, sometimes a simple show/hide isn’t enough. We want to create more pleasing
effects for our visitors.

Depending on the layout of the page, an instant show/hide effect may not make it
entirely clear to the visitor what content was revealed. This is another advantage of
sliding an element into view because it gives a visual cue to the visitor where the page
layout is changing.

We could use jQuery’s built-in show method with a duration because this almost does
the job, but not quite because it also animates the width of the element, as shown earlier
in Figure 7-1. As you also noted earlier, the show method will animate any padding
and margin around the element, so to solve the problem we will use the animate func-
tion to create a custom effect.

Solution
Use the animation function to toggle both the height and the opacity at the same time:

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').animate({ opacity: 'toggle', height: 'toggle' });
 return false;
 });
});

7.4 Simultaneously Sliding and Fading Elements | 161

Discussion
Using the animate method allows us to specify exactly which CSS properties we want
to animate for the effect.

We are also using toggle as the end point value. This way, the animate method takes
the current height in the initial state and toggles it to either zero or 100 percent of the
initial state.

In our example, the initial state of the box is visible. If we want it to slide and fade
into view, then we only need to set the display property to none in the stylesheet.

Warning: there is no need to set the height to zero in the style; in fact, doing so will
mean the animate won’t expand to the correct height because it will toggle back and
forth between zero height (from the CSS) and zero height and display none (the final
point of slideUp).

7.5 Applying Sequential Effects
Problem
You want an effect to occur on one set of elements after another effect occurs on a
different set of elements. This is simple to solve if you just have one other effect to
execute, but if you want to apply the effect one-by-one to any number of elements, the
code could become difficult to maintain.

Solution
This solution uses the standard template outlined at the beginning of this chapter,
except that we have multiple copies of the div.box element on the page. This solution
is designed as such that we can be dealing with any number of div.box elements, from
just one single element to many, because the automatic sequence solution can handle
them all.

Manual callback

The basic approach to applying sequential effects would be to use the callback. This
would also be used if the next effect is different from the first:

$(document).ready(function () {
 var $boxes = $('.box').hide();

 $('#animate').click(function () {
 $boxes.eq(0).fadeIn('slow', function () {
 $boxes.eq(1).slideDown('slow');
 });
 });
});

162 | Chapter 7: Effects

Automatic sequence

This alternative method, based on Dave Methvin’s solution, will repeat in sequence the
effect on any number of elements:

$(document).ready(function () {
 var $boxes = $('.box').hide(),
 div = 0;

 $('#animate').click(function () {
 $($boxes[div++] || []).fadeIn('slow', arguments.callee);
 });
});

Discussion
The simple solution uses the callback feature to then step in to the next animation in
the sequence. The selector we use targets the first div.box; however, this doesn’t scale
because it is expecting there to be two and only two animated elements. Any less and
the code breaks. Any more, and some elements will be missed.

If we have many more, or even an unknown number of elements we need to animate
in sequence, then Dave Methvin’s solution is perfect.

There are two tricks to the code. The first is the failover to an empty array:

$($boxes[div++] || [])

This code increments the index counter, and if the element doesn’t exist, it passes an
empty array to jQuery.

When the jQuery result set is empty, running an animation doesn’t do anything. Since
the result is empty, jQuery doesn’t pass any DOM elements to the chained call, and
therefore any callbacks given to the chained method won’t be called either.

For example, if we ran the following code, the alert box would never appear—which
is a key ingredient to making this recipe work:

$('made-up-element').show(function () {
 alert('will never appear');
});

The second trick to this recipe is the callback argument:

arguments.callee

arguments is a keyword in JavaScript referring to a local variable that all functions have
access to. The arguments object is similar to any array but does not have any of the array
methods (such as slice) or properties except length.

7.5 Applying Sequential Effects | 163

arguments also contains a reference to the currently executing function in the
arguments.callee property. This is useful for recursive function calls, which is exactly
how we are using the property in this solution.

This solution says to keep incrementing through the $boxes jQuery collection and, on
completion of the animation, recursively execute the function. This continues until the
<div> index goes beyond the length of the $boxes jQuery collection ($boxes.length), at
which point an empty array is used as the jQuery collection, and thus the callback is
not executed, causing the code to finish running.

7.6 Determining Whether Elements Are Currently Being
Animated
Problem
When an animation is in progress, we may want to prevent the user from triggering the
animation to run again until the initial animation has finished.

An example of this may be if the user clicks a button to trigger some animation. This
could be to reveal some piece of information. For our particular contrived example,
when the user clicks the button, we will shake the box back and forth.

If the user keeps clicking the button, we won’t want to keep queuing animations, so
we need to test whether the animation is already running and, if it is, ignore the request
to animate.

Solution
For this solution, I want to include some debugging information, so I’ve included a
<div> element with the ID of debug, and we’ll append log messages to this to help us
see what’s happening.

We will use the :animated custom jQuery selector to test whether the animation is
running:

$(document).ready(function () {
 var speed = 100;

 $('#animate').click(function () {
 $('.box')
 .filter(':not(:animated)')
 .animate({ marginLeft: −10 }, speed, function () {
 $('#debug').append('<p>Starting animation.<p>');
 })
 .animate({ marginLeft: 10 }, speed)
 .animate({ marginLeft: −10}, speed)
 .animate({ marginLeft: 10 }, speed)
 .animate({ marginLeft: −10}, speed)
 .animate({ marginLeft: 10 }, speed)

164 | Chapter 7: Effects

 .animate({ marginLeft: 0}, speed, function () {
 $('#debug').append('<p>Finished animation.</p>');
 }); // end of our long chain
 });
});

Discussion
In this contrived example, we use multiple calls to the animate method to make the box
shake back and forth (though if this were required in reality, it might be better to use
a bouncing easing instead!).

This animation is triggered when the user clicks the animate button.

I have included two callback functions to show when the animation starts and finishes.
Note that even though there are several lines, because of the way chaining works, this
is in fact one single line of JavaScript starting from $('.box') and ending on }); // end
of our long chain.

The following line of jQuery filters out any div.box element that is currently being
animated from our collection and only running the subsequent animations on the re-
maining elements:

.filter(':not(:animated)')

Since we have a single div.box element in our example, the animation will run only if
the element isn’t animating already.

7.7 Stopping and Resetting Animations
Problem
If an animation is running, we may be required to stop it in midflow. A common prob-
lem is seen when using a mouseover and a mouseout to trigger an animation to show
and hide a particular block of content.

If the mouse is run in and out of the trigger area, the animation continuously triggers;
for example, the content block would keep sliding up and down until it completed the
number of times it was triggered.

One approach could be to use the :animated selector to filter out the element for ani-
mation. However, you may want to fade an element back out of view when the user
moves the mouse away from the trigger rather than letting it complete. This can be
solved with the stop() method.

7.7 Stopping and Resetting Animations | 165

Solution
We have added a CSS style to the div.box element to set the opacity to zero.

Instead of having the user click the button to trigger the effect, we’re running the ani-
mation when the mouse hovers over the button. This is just to show that without the
stop() calls, the animation would run out of control:

$(document).ready(function () {
 $('#animate').hover(function () {
 $('.box').stop().fadeTo(200, 1);
 }, function () {
 $('.box').stop().fadeTo(200, 0);
 });
});

Discussion
Typically this problem would be solved using a combination of fadeIn() and
fadeOut(). However, if this were used, firstly without stop(), then the effect keeps
repeating each time the mouse hovers over the button.

To prevent this, we insert the stop() command before queuing on the next animation.
The big advantage of this is that it stops the animation midflow. This means if the
opacity of the element is at 0.5 (or 50 in IE), it will proceed with the next animation
with the starting point of 0.5.

Since we are now stopping in the middle of the opacity animation, it also means we
can’t properly use fadeIn() and fadeOut(). We have to explicitly state where we want
to fade to. So, now we are using fadeTo(), passing in the duration and then the target
opacity.

Now when the user moves their mouse back and forth over the button, the animation
doesn’t repeat but fades in and out in a single smooth transition.

7.8 Using Custom Easing Methods for Effects
Problem
jQuery comes with only two built-in easing functions: swing and linear. The default is
swing. If we want to make our animations a little more interesting, then we might want
to use a different easing function—this could give us a bounce animation, or elastic, or
perhaps just an animation that slows down as it’s coming to its end.

We can manually add easing functions, but we can also include a predefined collection
using the jquery.easing plugin, which can be downloaded from http://jquery-cookbook
.com/go/easing/.

166 | Chapter 7: Effects

http://jquery-cookbook.com/go/easing/
http://jquery-cookbook.com/go/easing/

Solution
By first including jquery.easing.1.3.js after we include the jQuery library, we can now
make use of any one of the 31 new easing functions:

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').animate({ scrollTop: '+=100' },
 { duration: 400, easing: 'easeOutElastic' });
 });
});

Discussion
By including the easing library, we can specify a large range of values in the easing
property in the options parameter. The animate method also supports passing easing
as the third parameter, so the preceding solution could be written as follows:

$('.box').animate({ scrollTop: '+=100' }, 400, 'easeOutElastic');

To create your own custom easing function, you can extend the easing object using this:

jQuery.extend(jQuery.easing, {
 customEasing: function(x, t, b, c, d) {
 return c*(t/=d)*t + b;
 },
});

The preceding example is the equation for the easeInQuad easing. All easing functions
take five parameters:

fraction
The current position of the animation, as measured in time between 0 (the begin-
ning of the animation) and 1 (the end of the animation)

elapsed
The number of milliseconds that have passed since the beginning of the animation
(seldom used)

attrStart
The beginning value of the CSS attribute that is being animated

attrDelta
The difference between the start and end values of the CSS attribute that is being
animated

duration
The total number of milliseconds that will pass during the animation (seldom used)

7.8 Using Custom Easing Methods for Effects | 167

7.9 Disabling All Effects
Problem
Your user or web application may require that all animations are disabled, but the effect
of revealing information or scrolling (or whichever animation type) may still be
required.

This may be a personal preference, the user may be using a low-resolution device, or it
may be because the user finds the animations problematic in their browsing.

jQuery has a way to disable all animations from one access point but still supports the
animate method and its final value.

Solution
$.fx.off = true;

$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').animate({ width: '+=100', height: '+=100' });
 });
});

Discussion
By setting fx to off using the following line, all animation calls have the same effect as
calling css() directly:

$.fx.off = true;

This can be set at any point and it will disable the animations, which means it can be
offered as a user preference. To enable animations again, you simply set the flag to
false:

$.fx.off = false;

7.10 Using jQuery UI for Advanced Effects
Problem
If you want to create more complicated effects, it is certainly possible using the
animate method. This might be for a web application that needs to animate a whole
range of CSS properties on an element, or perhaps there is a special way a dialog box
must disappear when closed—say, for instance, explode away on the screen (see Fig-
ure 7-2).

168 | Chapter 7: Effects

Figure 7-2. The explode effect running against the div.box element

Solution
Download the jQuery UI library from http://jquery-cookbook.com/go/jqueryui-down
load. The library can now be included after jQuery is included and the new effects
plugin is available.

For this solution, I have added an extra button to show two effects and added a new
class to our CSS.

CSS
.big {
 font-size: 400%;
 width: 500px;
 height: 500px;
 line-height: 100%;
}

jQuery
$(document).ready(function () {
 $('#animate').click(function () {
 $('.box').toggleClass('big', 2000);
 });

 $('#effect').click(function () {
 $('.box').effect('explode', null, 2000);

7.10 Using jQuery UI for Advanced Effects | 169

http://jquery-cookbook.com/go/jqueryui-download
http://jquery-cookbook.com/go/jqueryui-download

 });
});

Discussion
The jQuery UI effects library also modifies the way addClass, removeClass, and toggle
Class work; in particular, you can supply a duration as the second parameter, and it
will animate a transition from the current state to the new class, working through all
new class properties.

So, the first example adds the class big and sets the animation to run for two seconds.
All the CSS properties from the big class are animated onto the div.box element. Be-
cause the toggleClass method has also been modified by jQuery UI, we are able to
toggle back and forth to the original state.

Second, we are using the effect() method, which is bespoke to the jQuery UI library.
This method offers a collection of show and hide functions.

The effect() method requires the option object passed in as the second
variable; this can be null or it can be an empty object, but it must be
provided to be able to pass in the duration.

Using the string explode, the div.box will split into nine pieces and fade off the page as
shown earlier in Figure 7-2.

At the time of this writing, one or two effect types have slight side effects
in Safari 4. They do work in all other A-grade browsers as outlined by
Yahoo! at http://developer.yahoo.com/yui/articles/gbs/.

To see all the different available effects, you can visit http://jquery-cookbook.com/go/
jqueryui-effects and play with all the interactive demos.

170 | Chapter 7: Effects

http://developer.yahoo.com/yui/articles/gbs/
http://jquery-cookbook.com/go/jqueryui-effects
http://jquery-cookbook.com/go/jqueryui-effects

CHAPTER 8

Events

Ariel Flesler

8.0 Introduction
Events are the main method of communication between a user and a website or web
application. Most of our JavaScript/jQuery coding will be run in response to a variety
of user and browser events.

By user events, I mean basically keyboard and mouse interaction like click, mousedown,
keypress, etc. Browser events are mainly DOM events like document.ready,
window.onload, and many other events related to DOM elements.

When coding Ajax applications, we also have custom jQuery Ajax events that are dis-
patched during the process of an Ajax request, that is, ajaxSend, ajaxComplete,
ajaxError, and some more.

jQuery’s API is very consistent, especially when it comes to events. Attaching a handler
to any kind of event is done using the same code structure:

jQuery(listener).bind('eventName', handlerFunction);

This syntax also applies to a fourth category that I haven’t mentioned yet. jQuery’s
event system can be used for event-driven programming* in which you can create your
own custom events that can be bound and triggered as regular ones.

jQuery also provides a shortcut method for most common browser and Ajax events. A
model call using a shortcut would look like this:

jQuery(listener).eventName(handlerFunction);

When using bind(), eventName will be a string wrapped in either single or double
quotes. When using the shortcut, you simply put the event’s name as the jQuery
method’s name.

* http://en.wikipedia.org/wiki/Event-driven_programming

171

http://en.wikipedia.org/wiki/Event-driven_programming

Here’s an example of binding a click handler, with and without the shortcut:

// Using bind()
 jQuery('div').bind('click',function(e){...});
 // Using the shortcut
 jQuery('div').click(function(e){...});

During this chapter, I’ll use the shortcuts when available, just because they’re shorter
and easier to read, in my opinion. Both work equally, and there’s no advantage to using
the shortcut other than clarity and brevity; it’s simply a matter of taste.

I’ll assume that you already read Chapter 1, where the document.ready event is explained
in detail (Recipe 1.2). If you have any doubt about its use, do consult that recipe.

I also want to clarify that when I use the term plugin, for most cases I mean “plugins,
widgets, or simply blocks of code.” Most jQuery users tend to organize their code into
plugin-like structures, usually adding names to jQuery’s namespace.

Finally, jQuery’s event module was highly modified in 1.3. I will always mention when
something needs to be done differently, according to what jQuery version would
be used.

8.1 Attaching a Handler to Many Events
Problem
In many common situations, one needs to bind the same handler function to more than
one event (on the same element, that is). You could always do something like this:

jQuery('div').click(function(e){
 alert('event');
 })
 .keydown(function(e){
 alert('event');
 });

That is not such a problem if the function is short, but for longer blocks of code, re-
peating them over and over won’t be that trivial and is definitely not the best approach.

Solution
There’s more than a single solution to this simple but recurrent problem.

One way to solve it without repeating yourself too much would be as follows:

function handler(e){
 alert('event');
 }

 jQuery('div').click(handler)
 .keydown(handler);

172 | Chapter 8: Events

Defining a function once and then referring to it multiple times is not a bad approach,
but there’s an even simpler one provided by jQuery.

bind() accepts a list of events separated by spaces. That means you can solve the pre-
vious problem like this:

jQuery('div').bind'click keydown', function(e){
 alert('event');
 });

Discussion
You can also apply this behavior to unbind() and one().

To unbind a certain function, you need to have a reference to it, so even if you are using
the multievent feature, you still need to keep a reference to the handler. If you don’t
pass the function to unbind(), then any other event handler bound to that event will be
removed as well:

function handler(e){
 alert('event');
 }

 jQuery('div').bind('click keydown', handler);

 // ...

 jQuery('div').unbind('click keydown', handler);

8.2 Reusing a Handler Function with Different Data
Problem
You’ve come into a situation where you have many bindings, and the handler functions
look pretty similar. It doesn’t matter whether these bindings are applied to different
element/event combinations. The thing is, you don’t want to repeat yourself over and
over (who does?).

Here’s an example:

jQuery('#button1').click(function(e){
 jQuery('div.panel').hide();
 jQuery('#panel1').show();
 jQuery('#desc').text('You clicked the red button');
 });

 jQuery('#button2').click(function(e){
 jQuery('div.panel').hide();
 jQuery('#panel2').show();
 jQuery('#desc').text('You clicked the blue button');
 });

8.2 Reusing a Handler Function with Different Data | 173

 jQuery('#button3').click(function(e){
 jQuery('div.panel').hide();
 jQuery('#panel3').show();
 jQuery('#desc').text('You clicked the green button');
 });

As you can see, the only differences noticed on each handler are the color and the panel
to show. The amount of code would grow as you add more buttons or each time the
handler functions get larger.

Solution
bind() accepts an optional data argument to be bound together with each specific han-
dler function. The data values will be accessible from within this function by accessing
event.data† where event is the event object argument provided by jQuery.

Note that this value can be anything...an array, a string, a number, or an object literal.

It’s a common approach to pass an object literal, even if you are just passing one value,
to make the code more readable. This way, the name you give this single attribute within
the object will make your code a little more self-explanatory.

Discussion
event.data is used to provide precomputed values to a function, which means the values
you will be passing to bind() need to be already available at binding time. To handle
more “dynamic” values, there’s another way that we’ll learn about in Recipe 8.5.

The solution to the previous problem could look something like this:

function buttonClicked(e){
 jQuery('div.panel').hide();
 jQuery('#panel'+e.data.panel).show();
 jQuery('#desc').text('You clicked the '+e.data.color+' button');
 }

 jQuery('#button1').bind('click',{panel:1, color:'red'}, buttonClicked);
 jQuery('#button2').bind('click',{panel:2, color:'blue'}, buttonClicked);
 jQuery('#button3').bind('click',{panel:3, color:'green'}, buttonClicked);

Of course, you could make this even shorter by using a loop. This approach is called a
macro by some coders, and it’s a very common approach for jQuery code.

These macros will surely reduce the code length and can sometimes improve code
readability. Some other times, they’ll just make your code completely unreadable, so
use them with caution.

Here’s how you could do it:

jQuery.each(['red','blue','green'], function(num, color){
 num++; // it's 0-index based

† http://docs.jquery.com/Events/jQuery.Event#event.data

174 | Chapter 8: Events

http://docs.jquery.com/Events/jQuery.Event#event.data

 jQuery('#button'+num).bind('click',function(e){
 jQuery('div.panel').hide();
 jQuery('#panel'+num).show();
 jQuery('#desc').text('You clicked the '+color+' button');
 });
 })

As you can see, I haven’t used the data argument because we don’t really need it. The
code is now somewhat shorter, but not that much, and it’s not more readable.

The conclusion is that both approaches can be used on this kind of situation. Depend-
ing on the problem, one could be better (shorter, more readable, easier to maintain)
than the other.

8.3 Removing a Whole Set of Event Handlers
Problem
So, you’ve made a plugin-like block of code that binds many event handlers to certain
DOM elements.

Later, you want to clean them all up in order to dispose the plugin completely.

This could get a little lengthy if you added many handlers. Maybe you don’t even have
access to the bound handlers because they belong to another local scope.

You can’t unbind every handler for a certain event (or any existing event), because you
could be deleting other handlers that you didn’t take into account.

Solution
Use a unique namespace for each plugin you make. Any handler bound within this
plugin must be added with this namespace.

Later, when cleaning up, you just need to “unbind the whole namespace,” and all the
related event handlers will go away with one single line of code.

Discussion

How to bind with a namespace?

To add a namespace to an event type, you simply add a . followed by the namespace
name.

Since jQuery 1.3, you can add more than one (namespace) per event.

This is how you would bind the click and mousedown functions with a namespace:

jQuery.fn.myPlugin = function(){
 return this
 .bind('click.myPlugin', function(){

8.3 Removing a Whole Set of Event Handlers | 175

 // [code]
 })
 .bind('mousedown.myPlugin', function(){
 // [code]
 });
};

How to clean up my plugin?

To dispose the bindings above, you would do:

jQuery.fn.disposeMyPlugin = function(){
 return this.unbind('.myPlugin');
};

8.4 Triggering Specific Event Handlers
Problem
You need to trigger an event on a certain element (or many). This element belongs to
one or more plugins so it may have event handlers bound to this event.

The problem is that this event is a common one, like click or mousedown. Simply trig-
gering the event could run other event handlers that you didn’t expect.

Solution
On the same principle as the previous recipe, namespaces can be used for triggering as
well. When binding, you need to make sure you add a unique namespace to each set
of handlers.

This can also be used for the opposite situation; if you need to trigger any event except
those with a namespace, you can use the ! operator. An example of this will be shown
in the discussion.

Discussion

How to trigger handlers with a certain namespace?

Now, say you want to programmatically trigger the click event bound by the plugin
myPlugin. You could simply trigger the click event, but that would be a bad approach,
because any other handler bound to the same event would get fired as well.

This is how to do this properly:

jQuery.fn.runMyPlugin = function(){
 return this.trigger('click.myPlugin');
 };

176 | Chapter 8: Events

How to trigger handlers that do not have a namespace?

On the contrary, maybe you need to trigger a click (or any other event), but the target
element belongs to one or more plugins. Triggering an event could run undesired event
handlers, and that would cause problems that will be pretty hard to debug.

So, assuming all the plugins did use a namespace, this is how to trigger a click safely:

jQuery('div.panels').trigger('click!');

8.5 Passing Dynamic Data to Event Handlers
Problem
You want to pass certain values to an event handler, but they’re not known at “binding
time,” and they would change with each call to the handler.

Solution
There are two ways of solving this problem:

• Passing extra arguments to trigger()

• Passing a custom event object to trigger()

Both approaches work, and neither is clearly better than the other. The second ap-
proach was a little awkward to use before jQuery 1.3. Since this version, it has become
pretty straightforward and less problematic. I’ll explain each option in detail in the
“Discussion” section.

Passing data to the handler, instead of making the function grab it from somewhere
(global variables, jQuery namespace, etc.), makes the code easier to maintain because
you keep handler functions simple and agnostic from the environment.

This also allows you to reuse the same handler for many situations.

Discussion

Passing extra arguments

trigger() can receive one or more values that will be passed on to the triggered
handlers.

These values can be of any type and any amount. When you have more than one, you
need to wrap them with an array:

jQuery('form').trigger('submit', ['John','Doe', 28, {gender:'M'}]);

8.5 Passing Dynamic Data to Event Handlers | 177

The bound function for the preceding case would be something like this:

jQuery('form').bind('submit', function(e, name, surname, age, extra){
 // Do something with these arguments
});

This approach is simple and easy to read. The problem is, it looks pretty bad when you
need to receive many arguments; I personally wouldn’t go beyond four to five.

It’s also kind of misleading if the reader is used to the common function(e){ } kind of
function.

You start to wonder, where do these other arguments come from ?

Used within a programmatic event:

jQuery('#slideshow').bind('add-image', function(e, src){
 var $img = jQuery('').attr('src', src);
 jQuery(this).append($img);
});
jQuery('#slideshow').trigger('add-image', 'img/dogs4.jpg');

Used within a real event:

jQuery('#button').bind('click', function(e, submit){
 if(submit)
 // Do something
 else
 // Do something else
});
jQuery('#button').trigger('click', true);

Passing a custom event object

If you choose to pass a custom event object instead, each value you pass has to be
accessed as an attribute on the event object received by the handler.

This means that, no matter how many data you’re passing, the handler will always have
only a single argument, the event object.

This is already an advantage over the first approach, because it makes the function
declaration less verbose.

As mentioned, this approach is much nicer to use since jQuery 1.3. Here’s how you’d
code the first example with a custom object:

jQuery('form').bind('submit', function(e){
 // Do something with e.name, e.surname, etc.
});
jQuery('form').trigger({
 type:'submit',
 name:'John',
 surname:'Doe',
 age: 28,
 gender:'M'
});

Some more examples.

178 | Chapter 8: Events

Passing an object literal is actually a shortcut to creating an instance of
jQuery.Event.‡ This is the alternative way:

var e = jQuery.Event('submit'); // the new operator can be omitted
e.name = 'John';
e.surname = 'Doe';
e.age = 28;
e.gender = 'M';
jQuery('form').trigger(e);

You can, of course, use jQuery.extend instead of setting one attribute at a time.

You do need to create an event object yourself if you plan on retrieving data from this
object after the call to trigger(). That’s, by the way, a cool technique to pass infor-
mation from the handler to the caller (we’ll get into this in the next chapter).

What’s the difference with event.data?

Using event.data is useful for static values that are accessible at the time when the
function was bound. When the data you need to pass must be evaluated later (or each
time), event.data won’t do for you.

8.6 Accessing an Element ASAP (Before document.ready)
Problem
You need to gain access to a certain DOM element as soon as possible.

Using document.ready isn’t fast enough; you really want to control this element before
the page finishes rendering.

Issues like this are especially noticeable on large pages, where the document.ready event
takes longer to be reached.

Solution
This is a very common and generic problem that can be solved in many different ways.

There’s one approach that works for all of them, but it requires polling the DOM so it
adds overhead to the page-rendering process (definitely undesirable!).

These are some of the usual problems where one could rely on polling:

• Hide an element right away, before it is rendered (or another style operation)

• Bind event handlers to an element ASAP so that it quickly becomes functional

• Any other situation

We’ll discuss what’s the better approach for each situation in the “Discussion” section.

‡ http://docs.jquery.com/Events/jQuery.Event

8.6 Accessing an Element ASAP (Before document.ready) | 179

http://docs.jquery.com/Events/jQuery.Event

Discussion

Hide an element right away (or another style operation)

So, your problem is directly related to styling, you want to apply a conditional styling
to an element, and this condition needs to be evaluated by JavaScript.

The right way to go about this is adding a specific CSS class to an element that is quickly
accessible, like the <html> element, and then style the element accordingly.

Do something like this:

<!DOCTYPE html>
<html>
<head>
 <style type="text/css">
 html.no-message #message{ display:none; }
 </style>
 <script src="assets/jquery-latest.js"></script>
 <script type="text/javascript">
 // Bad
 jQuery(document).ready(function($){
 $('#message').hide();
 });
 // Correct
 jQuery('html').addClass('no-message');
 // or...
 document.documentElement.className = 'no-message';
 </script>
</head>
<body>
 <p id="message">I should not be visible</p>
 <!--
 Many more html elements
 -->
</body>
</html>

Bind event handlers to an element ASAP

Very often we have this large page with interactive elements, like buttons and links.

You don’t want those elements to just hang in there, without any functionality attached
while the page loads.

Luckily, there’s a great concept called event delegation that can save the day. Event
delegation is easy to implement with one of several jQuery plugins, and since jQuery
1.3, a plugin is no longer needed, because it has been added to the core jQuery file.

180 | Chapter 8: Events

You can now bind event handlers to elements that still don’t exist by using the method
live().§ That way, you don’t need to worry about waiting for the element to be ready
in order to bind the events.

To read more about event delegation, check Recipe 8.10.

Any other situation

Your problem isn’t about styling or about events. Then you, my friend, fall into the
worst group.

But don’t panic! There’s a better solution than polling if you’re concerned about per-
formance. I’ll explain it at last.

Polling can be implemented with a simple interval (setInterval) that checks
for an element, and once found, a certain function is run, and the interval needs to be
cleared.

There are two plugins that can aid you with this. One is LiveQuery,‖ which has an option
to register a function to be run for each newly found element that matches a selector.
This approach is pretty slow but supports the whole set of selectors.

There’s another plugin called ElementReady# that will also handle this situation
properly.

It lets you register pairs of id/function, and it will poll the DOM. Once an id is found,
the function will be called, and the id is removed from the queue.

This plugin implements, probably, the fastest approach to detect elements, that is,
using document.getElementById. This plugin is pretty fast but only supports ids.

The whole document-ready concept means “after the html is
parsed.” This means the browser reached the body’s closing tag, </body>.

In other words, instead of using document.ready, you could simply put your scripts right
before </body>.

You can apply the same principle to other parts of the DOM: you can add a <script>
right after the element you want to access, and you can know, for certain, that it will
be already accessible from it.

Here’s an example:

<!DOCTYPE html>
<html>
<head>
 <script src="assets/jquery-latest.js"></script>

Polling.

Customly positioned scripts.

§ http://docs.jquery.com/Events/live

‖ http://plugins.jquery.com/project/LiveQuery

#http://plugins.jquery.com/project/ElementReady

8.6 Accessing an Element ASAP (Before document.ready) | 181

http://docs.jquery.com/Events/live
http://plugins.jquery.com/project/LiveQuery
http://plugins.jquery.com/project/ElementReady

</head>
<body>
 <p>The time is </p>
 <script type="text/javascript">
 jQuery('#time').text(new Date().toString());
 </script>
 <!-- Many more html elements -->
</body>
</html>

As you can see, no polling was needed in this case. This is a feasible solution if you
don’t need to use it a lot or you’ll be adding tons of scripts to the page.

8.7 Stopping the Handler Execution Loop
Problem
You have several handlers bound to the same element/event combination.

You want to, from within a handler, prevent the rest from being called, something like
what event.stopPropagation()* does. The problem is that event.stopPropagation()
only works for elements that are below the current element in the DOM hierarchy.

Solution
Since jQuery 1.3, event objects passed to handlers have a new method called
stopImmediatePropagation().† This method will do just that, and no subsequent event
handler will be notified of the current event. It will also stop the event’s propagation,
just like stopPropagation() does.

This method has been taken from ECMAScript’s DOM level 3 events specification.‡

If you want to consult the event object, to know whether this method has been called,
you can do so by calling event.isImmediatePropagationStopped(),§ which will return
either true or false.

Discussion

Examples

stopImmediatePropagation() can cancel the actual submit bind-
ing(s) if a certain situation is met:
Simple form validation.

* http://docs.jquery.com/Events/jQuery.Event#event.stopPropagation.28.29

† http://docs.jquery.com/Events/jQuery.Event#event.stopImmediatePropagation.28.29

‡ http://www.w3.org/TR/DOM-Level-3-Events/

§ http://docs.jquery.com/Events/jQuery.Event#event.isImmediatePropagationStopped.28.29

182 | Chapter 8: Events

http://docs.jquery.com/Events/jQuery.Event#event.stopPropagation.28.29
http://docs.jquery.com/Events/jQuery.Event#event.stopImmediatePropagation.28.29
http://www.w3.org/TR/DOM-Level-3-Events/
http://docs.jquery.com/Events/jQuery.Event#event.isImmediatePropagationStopped.28.29

jQuery('form')
 .submit(function(e){
 e.preventDefault(); // Don't submit for real
 if(jQuery('#field').val() == '')
 e.stopImmediatePropagation();
 })
 .submit(function(e){
 // Only executed if the function above
 // didn't call e.stopImmediatePropagation
 });

It can also be useful for disabling elements or blocking containers
temporarily:

(function($){

function checkEnabled(e){
 if(jQuery(this).is('.disabled')){
 e.stopImmediatePropagation(); // Stop all handlers
 e.preventDefault();
 }
};

jQuery.fn.buttonize = function(){
 return this.css('cursor','pointer')
 .bind('click mousedown mouseup',checkEnabled};
};

})(jQuery);

Disadvantages of this approach

While this new feature could be a lifesaver in some situations, you must be aware that
basing your logic on this behavior isn’t all that safe. When you rely on this feature, you
assume that the handlers will be executed in the order you expect and that no other
handlers will get in the way.

While events bound with jQuery are executed in the same order they’re added, it’s not
something the API strongly supports, meaning it could fail in some browsers or some
special situations. It’s also possible that bindings from different plugins could collide
because one could call stopImmediatePropagation() and the other wouldn’t get execu-
ted. This could cause unexpected problems that could take a long time to debug.

The conclusion is, don’t be afraid to use stopImmediatePropagation() if it really suits
your problem, but do use it with caution and double-check all the event handlers
involved.

You should rather think twice before using it in these situations:

• The listener is a “popular” DOM element that is also used by other plugins.

• The event is a common one like click or ready. There’s a greater chance of
collisions.

Killing all events.

8.7 Stopping the Handler Execution Loop | 183

On the other hand, it should be pretty safe to use it in these situations:

• The listener is a DOM element that is dynamically created and used merely by one
plugin.

• The event is a custom event like change-color or addUser.

• You intentionally want to stop any bound handler (like in the second example).

8.8 Getting the Correct Element When Using event.target
Problem
Your code is relying on the event.target‖ property of an event object, most likely in
combination with event delegation, where one single event handler is bound to a con-
tainer and it manages a variable number of descendant elements.

In some cases, you don’t seem to be getting the expected behavior. event.target is
sometimes pointing to an element that is inside the one you expected.

Solution
The event.target property refers to the element that got the event, that is, the specific
element.

This means that if, for example, you have an image inside a link and you click the link,
the event.target will be the image, not the link.

So, how should you work around this? If you’re not working with event delegation,
then using this (scope of the function) or event.currentTarget (since jQuery 1.3)
should do. It will always point to the element that has the event handler bound.

If you’re indeed using event delegation, then you’ll need to find the parent element you
were expecting.

Since jQuery 1.3, you can use closest().# As specified in its documentation, it will
return the closest element, beginning with the current element and going up through
the parents, that matches a certain selector.

If you’re using an older version of jQuery, you can simulate closest() with something
like this:

jQuery.fn.closest = function(selector){
 return this.map(function(){
 var $parent = jQuery(this).parents();
 return jQuery(this).add($parents).filter(selector)[0];
 });
 }

‖ http://docs.jquery.com/Events/jQuery.Event#event.target

#http://docs.jquery.com/Traversing/closest

184 | Chapter 8: Events

http://docs.jquery.com/Events/jQuery.Event#event.target
http://docs.jquery.com/Traversing/closest

This could be improved a little for performance, but this simple version should do for
general purposes.

Here’s a small example of a very common situation using closest():

jQuery('table').click(function(e){
 var $tr = jQuery(e.target).closest('tr');
 // Do something with the table row
 });

Discussion
event.target is one of the event object’s properties normalized by jQuery’s event sys-
tem (event.srcElement on IE).

So, how come an event is triggered on this target element and your event handler is
called even when bound to an ancestor ? The answer is Event bubbling.*

Most standard DOM events do bubble.† This means that, after the event was triggered
on the target, it will go up to its parent node and trigger the same event (with all its
handlers).

This process will continue until either it reaches the document or event.stopPropaga
tion() is called within an event handler.

Thanks to event bubbling, you don’t need to always bind event handlers to specific
elements; instead, you can bind to a common container once and handle them all from
there. This is the principle of event delegation.

8.9 Avoid Multiple hover() Animations in Parallel
Problem
We all have fallen for this at least once. You set up something like this:

jQuery('#something').hover(
 function(){
 // add some cool animation for jQuery(this)
 },
 function(){
 // Revert the cool animation to its initial state
 }
);

For example, you could be enlarging an element each time the mouse rolls over it and
then shrinking it to its initial size once the mouse rolls out.

All goes well until you quickly move the mouse over and out of the element and...what?!

* http://www.quirksmode.org/js/events_order.html

† http://en.wikipedia.org/wiki/DOM_events#Common.2FW3C_events

8.9 Avoid Multiple hover() Animations in Parallel | 185

http://www.quirksmode.org/js/events_order.html
http://en.wikipedia.org/wiki/DOM_events#Common.2FW3C_events

The jQuery('#something') element suddenly gets resized back and forth many times
until it finally stops.

Solution
The solution is indeed simple, too simple, but the problem is so recurrent that I really
consider this solution a useful one.

What you need to do in order to avoid this nasty effect is simply kill all existing ani-
mations on the element before you create a new one.

To do so, you have to use jQuery’s stop() method. It will (as the name says) stop the
current animation and, optionally, remove the following ones as well.

Discussion

Example

I’ll show you an example of animating the opacity CSS property, but it works the same
for any other property:

jQuery('#something').hover(
 function(){
 jQuery(this).stop().animate({opacity:1}, 1000);
 },
 function(){
 jQuery(this).stop().animate({opacity:0.8}, 1000);
 }
);

This also works for custom jQuery animations, like slideUp(), slideDown(),
fadeIn(), etc.

This is the former example using the fade methods:

jQuery('#something').hover(
 function(){
 jQuery(this).stop().fadeTo(1, 1000);
 },
 function(){
 jQuery(this).stop().fadeTo(0.8, 1000);
 }
);

Not there yet

There’s still another related problem that could arise in a situation like this:

jQuery('#something').hover(
 function(){
 jQuery(this).stop()
 .fadeTo(1, 1000)
 .animate({height:500}, 1000);
 },

186 | Chapter 8: Events

 function(){
 jQuery(this).stop()
 .fadeTo(0.8, 1000)
 .animate({height:200}, 1000);
 }
);

If you try this code and move the mouse quickly, the element will get animated crazily
again, but only its height (not the opacity) will animate.

The reason is simple; jQuery animations get queued by default. This means that if you
add several animations, they’ll get executed in sequence.

stop() by default only stops (and removes) the current animation. In our last example,
only the opacity animation will be removed each time, leaving the height animation in
the queue, ready to run.

To work around this, you have to either call stop() one more time or pass true as the
first argument. This will make stop() clean all the queued animations as well. Our
hover code should look like this:

jQuery('#something').hover(
 function(){
 jQuery(this).stop(true)
 .fadeTo(1, 1000)
 .animate({height:500}, 1000);
 },
 function(){
 jQuery(this).stop(true)
 .fadeTo(0.8, 1000)
 .animate({height:200}, 1000);
 }
);

8.10 Making Event Handlers Work for Newly Added Elements
Problem
You’ve bound one or more event handlers, and they suddenly stop working.

It happens after new elements are added dynamically by an Ajax request or simple
jQuery operations (append(), wrap(), etc.).

This problem is incredibly common, and we’ve all fallen for this at
least once.

I’ll explain the theory behind it in the “Discussion” section. If you feel
you need to understand this well before heading to the solutions, check
“Why do event handlers get lost ?” on page 188 first.

8.10 Making Event Handlers Work for Newly Added Elements | 187

Solution
There are two possible solutions for this recurring problem, each with its own pros
and cons:

Rebinding
This approach requires you to call bind() again and again, every time new elements
are added.

It’s pretty easy to implement and doesn’t require any plugin or new method.

You can simply have all the bindings in a function and call it again after each update.

Event delegation
It relies on event bubbling.‡ This is fast and light but requires a little understanding
and can be (just) a little tricky at times.

Since jQuery 1.3, there’s built-in support for event delegation. Using it is as simple
as using the new live() method instead of bind().

Discussion

Why do event handlers get lost ?

JavaScript, as opposed to CSS, isn’t a declarative language. You don’t describe behav-
iors, and they get “automagically” applied.

JavaScript, like most other programming languages, is imperative. The developer speci-
fies a sequence of actions to perform, and they get applied as the line of code is reached.

When you add a piece of code like this:

function handler(){
 alert('got clicked');
}
jQuery('.clickable').bind('click', handler);

this is what you’re “doing”:

1. Look for all elements with a CSS class “clickable” and save it to the collection.

2. Bind the “handler” function to the click event of each element in the collection.

If JavaScript/jQuery were interpreted declaratively, the previous code would mean the
following:

1. Each time an element with CSS class clickable is clicked, run the function handler.

However, because JavaScript/jQuery is interpreted imperatively, the only elements that
will get bound are those that match the selector at the time it is run. If you add new

‡ http://www.quirksmode.org/js/events_order.html

188 | Chapter 8: Events

http://www.quirksmode.org/js/events_order.html

elements with a clickable class or you remove the class from an element, the behaviors
won’t be added or removed for those elements.

A little introduction to event delegation

Event delegation consists of binding once, at the start, and passively listening for events
to be triggered. It relies on the fact that many events in the browser bubble up.

As an example, after you click a <div>, its parent node receives the click event as well,
and then it passes to the parent’s parent and so on, until it reaches the document element.

Pros and cons of each approach

Rebinding is simple: you just re-add the event handlers. It leads to new prob-
lems, such as adding event handlers to elements that were already bound. Some add
CSS classes to work around this problem (marking those bound with a certain class).

All this requires CPU cycles every time the elements are updated and requires more and
more event handlers to be created.

One way to work around both problems mentioned is to use named functions as event
handlers. If you always use the same function, then you’ve solved the duplication
problem, and the overhead is smaller.

Still, rebinding can lead to higher and higher amounts of RAM taken as time passes by.

Event delegation just requires an initial binding and there’s no need to
deal with rebinding at all. This is quite a relief for the developer and makes the code
shorter and clearer. The RAM problem mentioned before doesn’t apply to event dele-
gation. The content of the page might change, but the active event handlers are always
the same.

Event delegation has a catch, though. In order for it to work, the code that handles it
(live(), a plugin or your own code) must take the element that got the event
(event.target) and go through its ancestors to see which ones have event handlers to
trigger along with some more processing. This means that, while event delegation re-
quires less binding, it requires more processing each time an event is triggered.

Also, event delegation cannot be used with events that don’t bubble, such as focus and
blur. For these events, there’s a workaround that works cross-browser, using the
focusin and focusout events in some browsers.

Rebinding.

Event delegation.

8.10 Making Event Handlers Work for Newly Added Elements | 189

Conclusion

Event delegation seems like a nicer approach, but it requires extra processing.

My advice on this matter is to use live bindings just when you really need them. These
are two common situations:

Dynamic elements
You have a list of DOM elements that changes dynamically.

Large lists
Event delegation can work faster when you bind one live binding instead of, say,
100 from the regular ones. This is faster at the start and takes less memory.

If there’s no reason to use live(), then just go for bind(). If you then need to make it
live, switching should be just a matter of seconds.

190 | Chapter 8: Events

CHAPTER 9

Advanced Events

Ariel Flesler

9.0 Introduction
These recipes will deal with edge case problems, advanced optimizations, and certain
techniques to make your code cooler. These recipes are mostly for advanced developers
who want to take their jQuery code one step further.

As in Chapter 8, I’ll refer to code as plugins, but that doesn’t mean it needs to be an
actual plugin. If you don’t structure your code as jQuery plugins, then keep my naming
convention in mind.

9.1 Getting jQuery to Work When Loaded Dynamically
Problem
You are including jQuery dynamically into the page, by either adding a <script> ele-
ment to the DOM or doing it some other way like Ajax.

Once jQuery is loaded, you expect everything to start working, but for some reason,
no script starts.

Solution
You need to include an additional script to be executed after jQuery is loaded. This
script will simply call jQuery.ready(). After you do this, everything will start working
as expected.

191

Discussion

What is jQuery.ready()?

The jQuery.ready() function is called by jQuery’s core when the document is detected
as ready. Once called, all the document.ready handlers are triggered automatically.

You don’t need to worry about whether this function might have been
called already (for example, by the original detection), triggering all the
document.ready handlers again.

jQuery.ready() includes a check for duplicated executions internally.
Further calls will be ignored.

Why was this happening?

The document.ready detection is mostly based on events. Depending on the browser, a
certain event is bound, and it’s supposed to be triggered once the document is ready.

In addition, the window.onload event is bound for all browsers as a fallback measure in
case the other options fail.

What was happening to you is that jQuery was finally loaded into the page only after
the window.onload event; therefore, all the event handlers remained bound, and none
got triggered.

By calling jQuery.ready(), you’re “announcing” the document.ready event manually,
triggering all the handlers and getting things back to normal.

9.2 Speeding Up Global Event Triggering
Problem
Global event triggering implicates calling all the event handlers bound for a certain
event, on all available elements.

It is performed by calling jQuery.trigger() without passing any DOM element as con-
text. It is nearly the same as calling trigger() on all the elements that have one or more
bindings to the corresponding event, something like this:

jQuery('#a1,#a2,div.b5').trigger('someEvent');

Triggering globally is obviously simpler because you don’t need to know all the ele-
ments that need to be triggered.

It’s quite useful for certain situations but can also be a slow process at times. Although
it’s been optimized since jQuery 1.3, it still requires going through all the elements

192 | Chapter 9: Advanced Events

registered to jQuery’s event system. This can cause short (or not so short) hangs every
time an event is triggered like this.

Solution
One possible solution is to have one or more global objects that will act as event lis-
teners. These elements can be DOM elements or not. All global events will be bound
and triggered on one of these elements.

Instead of doing something like this:

jQuery('#text1').bind('change-page', function(e, title){
 jQuery(this).text('Page is ' + title);
});
jQuery('#text2').bind('change-page', function(e, title){
 jQuery(this).text('At ' + title + ' Page');
});
jQuery.trigger('change-page', 'Inbox');

you’d do something like this:

jQuery.page = jQuery({}); // Just an empty object
jQuery.page.bind('change', function(e, title){
 jQuery('#text1').text('Page is ' + title);
});
jQuery.page.bind('change', function(e, title){
 jQuery('#text2').text('At ' + title + ' Page');
});
jQuery.page.trigger('change', 'Inbox');

The syntax seems pretty much the same, but each call to trigger won’t be iterating
jQuery’s data registry (aka jQuery.cache).

Even if you decide to use a DOM element, the principle is the same. DOM elements
can be more appropriate at times. If, for example, you’re creating a table-related plugin,
then it’d make sense to use each <table> element as an event listener.

The problem with DOM elements in many browsers is that they’re the main source of
memory leaks. Memory leaks occur when there are certain amounts of RAM memory
that cannot be freed by the JavaScript engine as the user leaves a page.

You should be much more careful about how you save data into the objects when you
use DOM elements. That’s why jQuery provides the data() method.

Still, I’d personally use regular JavaScript objects in most situations. You can add at-
tributes and functions to them, and the likelihood (and magnitude) of memory leaks
will be smaller.

9.2 Speeding Up Global Event Triggering | 193

Discussion

Pros and cons

As stated by the recipe title, this approach is faster. You will be always triggering events
on single objects, instead of the n entries on jQuery.cache.

The downside of this approach is that everyone needs to know the event listener object
(jQuery.page in the example) in order to bind or trigger one of its known events.

This can be negative if you’re aiming to keep your code encapsulated.*

The concept of encapsulation is highly enforced in object-oriented programming,
where this is one of the things you should be very cautious about.

This is generally not such a great concern with jQuery programming, because it is not
object oriented and most users don’t get too worried about code encapsulation. Still,
it’s worth mentioning.

Making the listeners functional

The listener objects mentioned don’t have to be simple dummy objects with nothing
but bind(), unbind(), and trigger() (as far as we’re concerned).

These objects could actually have methods and attributes that would make them much
more useful.

The only problem, though, is that if we do something like this:

jQuery.page = jQuery({ number:1 });

to access the number attribute, we would be forced to do this:

jQuery.page.number; // undefined
 jQuery.page[0].number; // 1

This is how jQuery works on HTML nodes and anything else.

But don’t give up on me yet! It’s easy to work around this. Let’s make a small plugin:

(function($){

 // These methods will be copied from jQuery.fn to our prototype
 var copiedMethods = 'bind unbind one trigger triggerHandler'.split(' ');

 // Empty constructor
 function Listener(){
 };

 $.each(copiedMethods, function(i,name){
 Listener.prototype[name] = $.fn[name];
 });

* http://en.wikipedia.org/wiki/Encapsulation_(computer_science)

194 | Chapter 9: Advanced Events

http://en.wikipedia.org/wiki/Encapsulation_(computer_science)

 // Our "jQuery.fn.each" needs to be replaced
 Listener.prototype.each = function(fn) {
 fn.call(this);
 return this;
 };

 $.listener = function(data){
 return $.extend(new Listener(), data);
 };

})(jQuery);

Now we can create objects that will have all the jQuery methods we need that are related
to events, but the scope of the functions we pass to bind(), unbind(), etc., will be the
object itself (jQuery.page in our example).

Note that our listener objects won’t have all jQuery methods but just the ones we
copied. While you could add some more methods, most of them won’t work. That
would require a more complex implementation; we’ll stick to this one, which satisfies
our needs for events.

Now that we have this mini plugin, we can do this:

jQuery.page = jQuery.listener({
 title: 'Start',
 changeTo: function(title){
 this.title = title;
 this.trigger('change');
 }
});
jQuery.page.changeTo('Inbox');

Because you can now access the object from within the handlers, using the this, you
don’t need to pass certain values like the title as arguments to the handler. Instead, you
can simply use this.title to access the value:

jQuery.page.bind('change', function(e){
 jQuery('#text1').text('Page is ' + this.title);
});

9.3 Creating Your Own Events
Problem
You want to provide certain behaviors to an element when it’s bound to an event.

Solution
Use jQuery.event.special to do this. This feature requires an object with, at least, a
function that will be called each time your event is bound for the time on each element
and another function to clean up what you did in the first place.

9.3 Creating Your Own Events | 195

The syntax looks something like this:

jQuery.event.special.myEvent = {
 // Bind the custom event
 setup:function(data, namespaces){
 this; // The element being bound
 // return false to get the native binding, otherwise,
 // it will be skipped
 },
 // Clean up
 teardown:function(namespaces){
 this; // The element being bound
 // Ditto about returning false
 }
 };

After you add your event behavior, you can do something like this:

jQuery('#some_element').bind('myEvent', {foo:'bar'}, function(){...});

After this, your setup() function will be called.

Discussion

Handling every binding to your event

As explained, your setup() function will be called only when adding the first handler.

This is enough if the logic you’re encapsulating on this event doesn’t require some
operations to be run each time a new binding is performed.

This option is provided by jQuery, but the approach has changed since jQuery 1.3.3.

If you’re using an older version, then you just need to use jQuery.event.specialAll
instead of jQuery.event.special. It will accept the same kind of object, and your call-
backs will receive the same arguments. The only difference is that returning false won’t
bring any change.

As of jQuery 1.3.3, jQuery.event.specialAll is gone. To intercept all bindings for an
event, you need to include an add() (and optionally remove()) function in your
jQuery.event.special namespace. The functions will receive the handler that is about
to be bound, and can optionally return a new handler function to be used instead.

A real-world example

Let’s make sure this is clear by writing a simple example; I’ll use the 1.3.3+ notation.

Let’s suppose you want to have an event triggered when an element is selected (clicked)
and it isn’t disabled. We’ll assume that the item is disabled when it has the CSS class
disabled.

196 | Chapter 9: Advanced Events

Here’s a way of doing that:

// Save these to make the code shorter
// Don't do this within the global scope
var event = jQuery.event;
var $selected = event.special.selected = {
 setup:function(data){
 event.add(this, 'click', $selected.handler);
 return false;
 },
 teardown:function(){
 event.remove(this, 'click', $selected.handler);
 return false;
 },
 handler:function(){
 var $elem = jQuery(this);
 if(!$elem.hasClass('disabled'))
 $elem.triggerHandler('selected');
 }
};

As you can see, we provide our own handler for selected. Within the handler, we used
triggerHandler() instead of trigger() because we don’t need event bubbling, and
there’s no default action to prevent, so we save some needless processing.

Existing uses for this feature

jQuery.event.special is a great way of adding new behaviors without polluting the
jQuery namespace.

It doesn’t suit any situation, but it usually comes in handy when you need a custom
event that is based on another one (click in our example). It’s also useful if you have
a plugin that simply binds events or simulates them; then you can “mask” that plugin
as a regular event.

jQuery’s core uses jQuery.event.special to handle events bound to the
document.ready event. Actually, they’re stored as regular event handlers, but the first
time you bind to this event, you’re actually activating the (hacky) detection code.

It is also used to transparently handle mouseenter/mouseleave events (those used by
hover()). All the DOM traversal operations needed to achieve this are nicely hidden
within the setup() handlers.

There are also plugins that take advantage of jQuery.event.special. Some of these are
as follows:

mousewheel
Provides support for mouse wheel changes.†

† http://plugins.jquery.com/project/mousewheel

9.3 Creating Your Own Events | 197

http://plugins.jquery.com/project/mousewheel

drag, drop
Drag and drop support masked as simple events.‡

focusin, focusout
This snippet (not an actual plugin) originally written by Jörn Zaefferer was later
added via plugins to achieve event delegation of focus and blur events.

Checking these plugins can be a good start if you’re planning on adding new events to
jQuery.

9.4 Letting Event Handlers Provide Needed Data
Problem
You need to allow other plugins (or just simple jQuery code) to chime in and modify
certain variables before you perform the requested action.

Solution
Use events to notify other scripts about the action that is about to be carried out.

It is possible to get data that is gathered from the actioned event handlers.

If none is provided, you could then use some default option of your choice.

You’ll see how to do this according to what jQuery version you are using.

Discussion

How can we do this with jQuery 1.3+?

Since jQuery 1.3, with the addition of jQuery.Event, this can be achieved in a nicer way.
The old way still works for triggerHandler() but not for jQuery.trigger().

For the code we’ll see now, we will need to create a jQuery.Event:

var e = jQuery.Event('updateName');

Now, to call the handlers and retrieve the value, we’ll pass the event object to
trigger() and then fetch the data from the event object:

jQuery('#element').trigger(e);
 alert(e.result); // Charles

As I said at the beginning, this doesn’t work nicely when many handlers are bound and
is, in general terms, a little unreliable and fragile.

So, how can we communicate event handlers and the function triggering the event?

‡ http://plugins.jquery.com/project/drag, http://plugins.jquery.com/project/drop

198 | Chapter 9: Advanced Events

http://plugins.jquery.com/project/drag
http://plugins.jquery.com/project/drop

The answer is, through the event object that we’re passing.

The jQuery.Event object passed to trigger() will be the same that is received by each
handler as its first argument.

This means that we can do this:

jQuery('#name').bind('updateName', function(e){
 e.name = this.value;
 });

 var e = jQuery.Event('updateName');
 jQuery('#name').trigger(e);
 alert(e.name);

This example doesn’t differ much from simply accessing e.result, but what about
multiple event handlers that operate on the same event object?

jQuery('#first').bind('update', function(e){
 e.firstName = this.value;
 });
 jQuery('#last').bind('update', function(e){
 e.lastName = this.value;
 });

 var e = jQuery.Event('update');
 jQuery('#first, #last').trigger(e);
 alert(e.firstName);
 alert(e.lastName);

We now have a way of allowing any number of event handlers to provide needed in-
formation for a function to run. Needless to say, you can call trigger() several times,
passing the same event object.

As said before, it’d be wise to preset the event object with default values (if applicable).
Your code shouldn’t rely on the fact that others did subscribe to a certain event.

If no default value can be used, then you can always abort the call or throw an error.

How this was achieved before jQuery 1.3

Older versions of jQuery only allowed the users to get a single value, which would be
returned when calling jQuery.trigger() and/or triggerHandler().

It looked something like this:

jQuery('#element').bind('updateName', function(){
 return 'Charles';
 });

 var name = jQuery('#element').triggerHandler('updateName');
 alert(name); // Charles

This was OK until you had more than one event handler returning data. At that point,
it was a matter of “who comes last” to decide which one’s data would be returned.

9.4 Letting Event Handlers Provide Needed Data | 199

Allowing event handlers to prevent actions

This is really a specialization of what we just saw. Event objects, by design, have a
method called preventDefault(). This method is used on native events to abort com-
mon actions like clicks on links, but it has no real use on custom events.

We could take advantage of this and use this method to allow other scripts to prevent
actions that are about to be performed.

I’ll now show you an example of an action. I’ll use the mini plugin introduced on
Recipe 9.2, but that is certainly not a requirement to use this:

var remote = jQuery.listener({
 request:function(url, callback){
 jQuery.ajax({ url:url, success:callback });
 }
 });

 // Do a request
 remote.request('contact.html', function(html){
 alert(html);
 });

Now suppose we want to allow an external script to abort certain requests when
needed. We need to modify remote.request like this:

var remote = jQuery.listener({
 request:function(url, callback){
 var e = jQuery.Event('beforeRequest');
 e.url = url;
 this.trigger(e);

 if(!e.isDefaultPrevented())
 jQuery.ajax({ url:url, success:callback });
 }
 });

e.isDefaultPrevented() will return whether e.preventDefault() was ever called on this
object.

Any external script can now do something like this:

remote.bind('beforeRequest', function(e){
 if(e.url == 'contact.html')
 e.preventDefault();
 });

Returning false (within the function) would have nearly the same effect as calling
e.preventDefault(). It will also stop the event propagation, which could be desirable.

Needless to say, in a situation like this, we could use what we learned before to allow
the URL (or post data if added) to be modified by handlers.

200 | Chapter 9: Advanced Events

9.5 Creating Event-Driven Plugins
Problem
You want your plugin to be controllable from the outside. One should be able to “tell”
the plugin to do something at any time. There could be many instances (calls) of a
plugin, but our action should only be executed in the context we provide.

Solution
One way to do this is indeed using events.

When a plugin is called, it binds functions on each matched element that once triggered,
and it will perform the desired actions.

As a possible side solution, each time the plugin is called, instead of respecting the
chaining, it could return an object that contains the bindings and allows external ma-
nipulation (use the plugin from Recipe 9.2).

This allows you to call the plugin many times on the same element without messing up
the events.

Discussion

An example

We’ll now create a simple slideshow plugin. I’ll base this plugin on an existing plugin
of mine called jQuery.SerialScroll.§ I first thought of this approach when coding this
plugin, and, I must say, it worked pretty well.

We’ll name our plugin slideshow. It will receive an element and an array of URLs,
and it will cycle the images. It will allow previous and next movement, jumping to a
certain image, and also autocycling.

Let’s start with the basics:

(function($){
 $.fn.slideshow = function(options){

 return this.each(function(){
 var $img = $(this),
 current = 0;

 // Add slideshow behavior...
 });
 };
 })(jQuery);

§ http://flesler.blogspot.com/2008/02/jqueryserialscroll.html

9.5 Creating Event-Driven Plugins | 201

http://flesler.blogspot.com/2008/02/jqueryserialscroll.html

Now we’ll add a few local functions that will allow us to move to different images
(URLs) in the collection:

function show(index){
 var total = options.images.length;

 while(index < 0)
 index += total;

 while(index >= total)
 index −= total;

 current = index;
 $img.attr('src', options.images[index]);
 }

 function prev(){
 show(current − 1);
 }

 function next(){
 show(current + 1);
 }

We can now expose this functionality with events:

$img.bind('prev', prev).bind('next', next).bind('goto',function(e, index){
 show(index);
 });

What about autocycling? Let’s add a few more functions:

var auto = false, id;

 function start(){
 stop();
 auto = true;
 id = setTimeout(next, options.interval || 2000);
 }

 function stop(){
 auto = false;
 clearTimeout(id);
 }

Here are the events:

$img.bind('start', start).bind('stop', stop);

We now need to add a few lines to show() to keep autocycling if needed:

function show(index){
 // Same as before...

 if(auto)
 start();
 }

202 | Chapter 9: Advanced Events

And that’s it! We now have a full slideshow with prev, next, and autocycling.

In order to make the example clear, I made this plugin completely dependent on the
outside manipulation.

Here’s a model implementation:

...

(function($){
 var $image = $('#slideshow');

 $image.slideshow({
 images: ['1.jpg', '2.jpg', '3.jpg', '4.jpg'],
 interval: 3000
 });

 $('#prev').click(function(){
 $image.trigger('prev');
 });

 $('#next').click(function(){
 $image.trigger('next');
 });

 $image.trigger('goto', 0); // Initialize on 0
 $image.trigger('start'); // We want auto cycling

})(jQuery);

I used trigger() because it’s nice and short, but the truth is that it would
be faster if you used triggerHandler() because trigger() will generate
event bubbling (since jQuery 1.3) and you probably don’t need it.

What happens if an element already has one of these events?

It could happen (although it’s strange) that the #slideshow element could already have
a binding on an event by the name of prev, next, goto, start, or stop.

If this is the case, check Recipe 8.4 for a solution.

9.5 Creating Event-Driven Plugins | 203

How can I allow others to clean up the added event handlers?

Because I didn’t expose the bound functions, any other external code won’t be able to
unbind them.

In most cases, you could simply unbind the whole events from the element, something
like this:

jQuery('#slideshow').unbind('prev next goto start stop'); // Enumerate each event
// or
jQuery('#slideshow').unbind(); // Blindly remove them all

If you need a cautious unbinding or if you simply want to unbind all related events,
check Recipe 8.3.

What’s the difference with other approaches?

There are other existing techniques to allow external manipulation. I’ll compare some:

This pattern is used by jQuery UI (among others).
It consists of executing actions when the plugin is passed a string as the first argument,
for example:

jQuery('#image').slideshow('goto', 1);

This is a little shorter than using events, but the whole approach requires you to save
all the needed data (the current index in our case) in a public way, so it can be retrieved
afterward. People who use this pattern also tend to use data() to store the variables.

If you use events, you can simply use local variables because your event handlers have
access to the plugin’s local scope.

This pattern is used by the validate plugin from Jörn
Zaefferer (and others too).

Depending on how it is coded, the object’s methods could be able to access local var-
iables. To do so, it must use closures,‖ which aren’t a nice thing to abuse. Also, you
need to store this object somewhere (globally). This also requires you to do pseudo-
object-oriented code (which you may like or not).

You could create some kind of hybrid between this approach and the one I explained.
Instead of binding the events (prev, next, etc.) to the DOM element, you could create
an object (using jQuery.listener) and bind the events to it; then it could be returned.
As we saw in Recipe 9.2, this listener object wouldn’t be restricted to events. It could
have methods and even data saved into its attributes.

Allowing the plugin to accept commands.

Returning an object with methods.

‖ http://en.wikipedia.org/wiki/Closure_(computer_science)

204 | Chapter 9: Advanced Events

http://en.wikipedia.org/wiki/Closure_(computer_science)

9.6 Getting Notified When jQuery Methods Are Called
Problem
You want to perform a certain action when a DOM element gets modified using jQuery.
This could involve changing an attribute such as a CSS property, removing it from the
document, etc.

Some browsers already support mutation events,# which would serve this need, but
they’re not something you can use in a cross-browser fashion yet, and they aren’t
integrated with jQuery.

Another thing you might ever need is to modify the arguments passed to jQuery meth-
ods before they’re executed. On the same principle, you could need to alter the data
returned by a method after the executing of the function itself.

Solution
This is somehow related to aspect-oriented programming,* but here we won’t be nesting
functions; instead, we’ll overload the desired method once and trigger events every time
the method is called.

We’ll need one event to be triggered before the function is run to allow the arguments
to be changed. We’ll also need an event after the function is run so we can retrieve the
returned data and even change it if necessary.

Let’s see how to code this as a plugin. I’ll show you each step separately.

Discussion

Overloading the desired method

First, let’s create a function that replaces jQuery methods with our own function. I’ll
name it jQuery.broadcast(); you can change its name if you prefer something else:

(function($){

 $.broadcast = function(name){
 // Save the original method
 var old = $.fn[name];

 $.fn[name] = function(){
 // Broadcast
 };
 };

#http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-mutationevents

* http://en.wikipedia.org/wiki/Aspect_oriented_programming

9.6 Getting Notified When jQuery Methods Are Called | 205

http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-mutationevents
http://en.wikipedia.org/wiki/Aspect_oriented_programming

})(jQuery);

name needs to be the method name we want to override, for example:

jQuery.broadcast('addClass');

Triggering an event prior to the execution

Now that we have put our own function as the jQuery method, let’s see how to trigger
an event that will allow us to change the incoming arguments:

// Create an event object
 var e = $.Event('before-'+name);
 // Save the arguments into the object
 e.args = $.makeArray(arguments);
 // Trigger the event
 this.trigger(e);

Assuming you’re broadcasting addClass(), we can now do this:

jQuery('body').bind('before-addClass',function(e){
 e.args[0]; // The CSS class
});

Executing the original method

An event is now triggered, but we still have to call the old addClass(). We’ll save the
returned data into the event object as well so we can expose it later when we trigger
the other event.

e.ret = old.apply(this, e.args);

As you can see, we don’t pass the original arguments array; instead, we use the one we
exposed in case it was modified in some way.

Triggering an event after the execution

We now have the returned data saved in our event object. We can now trigger the final
event, allowing external modification of the returned data.

We’ll reuse the same event object, but we’ll change the event’s name.

e.type = 'after-'+name;
this.trigger(e);

Returning the result

All what’s left now is to return the resulting data and continue with the normal exe-
cution. We’ll give out what we saved on e.ret that could have been modified by an
event handler:

return e.ret;

206 | Chapter 9: Advanced Events

Putting it all together

This is the completed code we’ve developed:

(function($){

 $.broadcast = function(name){
 var old = $.fn[name];

 $.fn[name] = function(){
 var e = $.Event('before-'+name);

 e.args = $.makeArray(arguments);
 this.trigger(e);

 e.ret = old.apply(this, e.args);

 e.type = 'after-'+name;
 this.trigger(e);

 return e.ret;
 };
 };

})(jQuery);

Where to go from here?

I tried to keep the example short to illustrate the point. There are a couple of things
you can do to improve it; here are a few ideas:

• Use triggerHandler() instead of trigger(): if you don’t need the events to bubble,
you could simply use triggerHandler(). This will make the whole process faster;
note that triggerHandler() only triggers the event on the first element of the
collection.

• Run the process on each element separately: in the previous example, trigger() is
called on the whole collection at once. That will be OK for most cases but can yield
unexpected results when used on collections with multiple elements.

You could wrap what we put inside the function with a call to map(). That should
make the code work once per element.

The downside is that it will be slightly slower and will also generate an (unexpected)
stack entry (pushStack()) due to the call to map().

• Allow external code to prevent normal execution: if you’re using jQuery 1.3 or
higher, you could take advantage of the methods for jQuery.Event.

You can “ask” the event object whether someone called its preventDefault() meth-
od using e.isDefaultPrevented().

If this returns true, then you don’t call the original function.

9.6 Getting Notified When jQuery Methods Are Called | 207

• Avoid multiple overloads of the same jQuery method: this one is pretty simple;
just create an internal object literal where you keep track of which methods were
overloaded. Then you just ignore repeated calls.

• Integrate this with jQuery.event.special: this one will save you from calling
jQuery.broadcast() for each method you want to overload.

Instead, you add an entry to jQuery.event.special for each method, and you in-
ternally call jQuery.broadcast() when someone binds an event. This should be
combined with the check for duplicated calls.

9.7 Using Objects’ Methods as Event Listeners
Problem
You have objects with methods and attributes, and you want to pass those methods
(functions) as event handlers. The problem is that once you do this, the method will
“lose the reference” to the object, and you have no way of referencing the object within
the event handlers.

Solution
This used to be quite complicated to achieve. It required you to generate closures that
would encapsulate the object and then pass them to bind().

Since jQuery 1.3.3, a new parameter has been added to bind(). It allows you to specify
an object as the scope or this of the event handler without using function closures.

This makes the required code both shorter and faster. You can now pass the object’s
method as the function and the object itself as the scope.

Discussion

Where did the node go?

You will surely wonder this sooner or later. I said before that when you pass a scope
object to bind(), the this of the event handler will be overridden. This means we can’t
retrieve the node as we always do...but the node is not lost.

When you pass a scope object to the bind() method, events will be delivered with the
this of the event handler set to the scope object. You can still determine the element
being delivered to the event by using the event.currentTarget property, which contains
a reference to the DOM element.

It’s usually not needed because using the this is shorter, but in situations like this, it’s
the only way around.

208 | Chapter 9: Advanced Events

The example

I’ll create a small example that should illustrate how to use the scope parameter and
also show you a situation where it is useful.

For the example, we’ll need two objects. Each will have a method that we
want to bind as an event handler.

These are the objects:

function Person(name){
 this.name = name;
 this.married = false;
}

jQuery.extend(Person.prototype, {
 whatIsYourName: function(){
 alert(this.name);
 },
 updateMarriedState: function(e){
 var checkbox = e.currentTarget;
 this.married = checkbox.checked;
 }
});

var peter = new Person('Peter');
var susan = new Person('Susan');

Let’s suppose we have some sort of form and it has two checkboxes
(#c1 and #c2). Each will manipulate the married state of one of our previous objects.

jQuery('#c1').bind('change', peter.updateMarriedState, peter);
jQuery('#c2').bind('change', susan.updateMarriedState, susan);

Thanks to the scope attribute, we don’t need to create new functions for each binding;
we can use the objects’ methods instead.

The methods don’t even need to be attached to the objects in the first place. You could
do something like this:

function updatePersonMarriedState(e){
 var checkbox = e.currentTarget;
 this.married = checkbox.checked;
}
jQuery('#c1').bind('change', updatePersonMarriedState, peter);
jQuery('#c2').bind('change', updatePersonMarriedState, susan);

As you can see, you’re not really forced to put those functions into the objects’ proto-
type, and it could actually make more sense to keep them separated. Why should a
method belonging to Person know about checkboxes and the node? It’s probably nicer
to keep all the specific DOM manipulation apart from the data.

In some cases, the object’s method won’t need to know about the node or the event
object at all. When this happens, we can bind a method directly, and we won’t be
mixing DOM and data at all.

The objects.

Binding the methods.

9.7 Using Objects’ Methods as Event Listeners | 209

If we had to have make two buttons (#b1 and #b2) to display the name of one person
when clicked, then it’d be as simple as this:

jQuery('#b1').bind('click', peter.whatIsYourName, peter);
jQuery('#b2').bind('click', susan.whatIsYourName, susan);

It’s worth mentioning that both methods are actually the same:

peter.whatIsYourName == susan.whatIsYourName; // true

The function is created only once and saved into Person.prototype.

210 | Chapter 9: Advanced Events

CHAPTER 10

HTML Form Enhancements
from Scratch

Brian Cherne

10.0 Introduction
Whether you’re trying to learn more about JavaScript and jQuery or you just want to
code the most direct solution for your immediate problem, sometimes writing code
from scratch is the best approach. This chapter aims to provide you with simple, generic
solutions that will help you get started writing your own code.

It is important to note that while there are great benefits to starting from scratch, some
of the more common problems you’ll encounter, such as remaining character count,
autoresizing textareas, and form validation (just to name a few), have already been
addressed by others. Please see Chapter 11 or visit the jQuery forums and blogs online
for more information on how community-critiqued and community-tested plugins can
help you. Sometimes it helps to look at someone else’s code to find out what you could
do better with yours.

When necessary, I provide some sample HTML under the “Problem” heading of each
recipe. This isn’t a philosophical statement—there isn’t anything wrong or problematic
with naked HTML. I am, however, trying to reinforce the mind-set that JavaScript
should be used for enhancing existing HTML and improving user interaction. Java-
Script is, and should be considered, completely separate from your HTML.

211

In the following recipes I am only showing XHTML code snippets rel-
evant to the problem. Please make sure that your code is a complete
XHTML document and that it passes validation.

Also, I am only including $(document).ready(function(){...}) in the
recipes where that is part of the discussion. All other solutions assume
you will place the JavaScript in the correct location for your code struc-
ture—either in the .ready() handler or at the bottom of your file after
the XHTML code in question. Please see Chapter 1 for more
information.

10.1 Focusing a Text Input on Page Load
Problem
You have a login form on your home page, and you’d like the username text input to
be focused on page load.

Solution
Use the jQuery $(selector).focus() method:

// when the HTML DOM is ready
$(document).ready(function(){
 // focus the <input id="username" type="text" ...>
 $('#username').focus();
});

Discussion
Using $(document).ready() should be fast enough. However, in situations like retriev-
ing a huge HTML file over a slow connection, the cursor might focus later than
desired—the user could have already entered her username and could be in the process
of typing her password when $(document).ready() executes and puts her cursor back
in the username text input. How annoying! In this case you could use inline JavaScript
after the <input> tag to make focus immediate:

<input name="username" id="username" type="text" />

<script type="text/javascript">
 $('#username').focus();
</script>

Or, if you prefer to keep your code together in the $(document).ready() block, you can
check to see whether the text input has any text in it before giving it focus:

// when the HTML DOM is ready
$(document).ready(function(){
 var $inputTxt = $('#username');
 if($inputTxt.val() == '') {
 // focus the username input by default

212 | Chapter 10: HTML Form Enhancements from Scratch

 $inputTxt.focus();
 }
});

What will happen when JavaScript is disabled? The user will have to manually click
into the text input to start typing.

10.2 Disabling and Enabling Form Elements
Problem
Your order form has fields for both shipping and billing contact information. You’ve
decided to be nice and supply the user with a checkbox that indicates the user’s shipping
information and billing information are the same. When checked, the billing text fields
should be disabled:

<fieldset id="shippingInfo">
 <legend>Shipping Address</legend>

 <label for="shipName">Name</label>
 <input name="shipName" id="shipName" type="text" />

 <label for="shipAddress">Address</label>
 <input name="shipAddress" id="shipAddress" type="text" />
</fieldset>

<fieldset id="billingInfo">
 <legend>Billing Address</legend>

 <label for="sameAsShipping">Same as Shipping</label>
 <input name="sameAsShipping" id="sameAsShipping" type="checkbox"
value="sameAsShipping" />

 <label for="billName">Name</label>
 <input name="billName" id="billName" type="text" />

 <label for="billAddress">Address</label>
 <input name="billAddress" id="billAddress" type="text" />
</fieldset>

Solution 1
If all you want to do is disable the billing fields, it’s as simple as using the
jQuery .attr() and .removeAttr() methods when the change event is triggered:

// find the "sameAsShipping" checkbox and listen for the change event
$('#sameAsShipping').change(function(){

 if(this.checked){
 // find all text inputs inside billingInfo and disable them
 $('#billingInfo input:text').attr('disabled','disabled');

10.2 Disabling and Enabling Form Elements | 213

 } else {
 // find all text inputs inside billingInfo and enable them
 $('#billingInfo input:text').removeAttr('disabled');
 }

}).trigger('change'); // close change() then trigger it once

Solution 2
While selecting a checkbox and disabling the form fields might be enough to get the
point across to the user, you could go the extra mile and prepopulate the billing text
fields with data from shipping information.

The first part of this solution is the same in structure as the solution shown previously.
However, in addition to disabling the billing fields, we are also prepopulating them
with data from the shipping fields. The following code assumes the shipping and billing
<fieldset> elements contain the same number of text inputs and that they are in the
same order:

// find the "sameAsShipping" checkbox and listen for the change event
$('#sameAsShipping').change(function(){
 if(this.checked){
 // find all text inputs inside billingInfo, disable them, then cycle
through each one
 $('#billingInfo input:text').attr('disabled',
'disabled').each(function(i){

 // find the shipping input that corresponds to this billing input
 var valueFromShippingInput =
$('#shippingInfo input:text:eq('+i+')').val();
 // set the billing value with the shipping text value
 $(this).val(valueFromShippingInput);

 }); // close each()

 } else {
 // find all text inputs inside billingInfo and enable them
 $('#billingInfo input:text').removeAttr('disabled');
 }
}).trigger('change'); // close change() then trigger it

The second part of this solution updates the billing fields automatically when the user
enters information into the shipping fields, but only if the billing fields are otherwise
disabled:

// find the shippingInfo text inputs and listen for the keyup and change event
$('#shippingInfo input:text').bind('keyup change',function(){

 // if "sameAsShipping" checkbox is checked
 if ($('#sameAsShipping:checked').length){

 // find out what text input this is
 var i = $('#shippingInfo input:text').index(this);
 var valueFromShippingInput = $(this).val();

214 | Chapter 10: HTML Form Enhancements from Scratch

 $('#billingInfo input:text:eq('+i+')').val(valueFromShippingInput);
 }

}); // close bind()

Discussion
In the preceding solution I’m using the input:text selector to avoid disabling the
checkbox itself.

Using .trigger('change') immediately executes the .change() event. This will check
the state of the checkbox initially, in case it is checked by default. Also, this protects
against Firefox and other browsers that hold on to radio button and checkbox states
when the page is refreshed.

What will happen when JavaScript is disabled? You should hide the checkbox by de-
fault in CSS. Then use JavaScript to add a class name to a parent element that would
override the previous CSS rule. In the following example code I’ve added an extra
<div> surrounding the checkbox and label so they can be easily hidden:

<style type="text/css" title="text/css">
 #sameAsShippingWrapper { display:none; }
 .jsEnabled #sameAsShippingWrapper { display:block }
</style>

...

// when the HTML DOM is ready
$(document).ready(function(){
 $('form').addClass('jsEnabled');
});

...

<form>
 ...
 <div id="sameAsShippingWrapper">
 <label for="sameAsShipping">Same as Shipping</label>
 <input name="sameAsShipping" id="sameAsShipping" type="checkbox" ... />
 </div>

</form>

As an alternative to hiding the checkbox in CSS and showing it using JavaScript, you
could add the checkbox to the DOM using JavaScript. I prefer to keep my HTML, CSS,
and JavaScript separate, but sometimes this is the better solution:

var html_label = '<label for="sameAsShipping">Same as Shipping</label>';
var html_input = '<input name="sameAsShipping" id="sameAsShipping" type="checkbox"
value="sameAsShipping" />';

$(html_label + html_input).prependTo('#billingInfo").change(...).trigger(...);

10.2 Disabling and Enabling Form Elements | 215

10.3 Selecting Radio Buttons Automatically
Problem
You have a series of radio buttons. The last radio button is labeled “Other” and has a
text input field associated with it. Naturally you’d want that radio button to be selected
if the user has entered text in the Other field:

<p>How did you hear about us?</p>
<ul id="chooseSource">

 <input name="source" id="source1" type="radio" value="www" />
 <label for="source1">Website or Blog</label>

 <input name="source" id="source2" type="radio" value="mag" />
 <label for="source2">Magazine</label>

 <input name="source" id="source3" type="radio" value="per" />
 <label for="source3">Friend</label>

 <input name="source" id="source4" type="radio" value="oth" />
 <label for="source4">Other</label>
 <input name="source4txt" id="source4txt" type="text" />

Solution 1
In the HTML code you’ll notice the radio button, label, and associated text input ele-
ments are wrapped in an tag. You don’t necessarily need this structure, but it
makes finding the correct radio button much easier—you’re guaranteed there’s only
one radio button sibling:

// find any text input in chooseSource list, and listen for blur
$('#chooseSource input:text').blur(function(){

 // if text input has text
 if ($(this).val() != '') {
 // find the radio button sibling and set it be selected
 $(this).siblings('input:radio').attr('checked',true);
 }

});

Solution 2
To take the concept one step further, when the radio button is selected, we
can .focus() the text field. It’s important to note that the following code completely
replaces the previous solution. Instead of using the .blur() method and then chaining

216 | Chapter 10: HTML Form Enhancements from Scratch

a .each() method, just use the .each() method since that gives us access to all the
objects we need:

$('#chooseSource input:text').each(function(){

 // these are both used twice, let's store them to be more efficient
 // the text input
 var $inputTxt = $(this);
 // the associated radio button
 var $radioBtn = $inputTxt.siblings('input:radio');

 // listen for the blur event on the text input
 $inputTxt.blur(function(){
 // if text input has text
 if ($inputTxt.val() != '') {
 // select radio button
 $radioBtn.attr('checked',true);
 }
 });

 // listen for the change event on the radio button
 $radioBtn.change(function(){
 // if it is checked, focus on text input
 if (this.checked) { $inputTxt.focus(); }
 });

}); // close each()

Discussion
The jQuery .sibling() method only returns siblings, not the HTML element you’re
attempting to find siblings of. So, the code $(this).siblings('input:radio') could be
rewritten $(this).siblings('input') because there is only one other input that is a
sibling. I prefer including the :radio selector because it is more explicit and creates self-
commenting code.

It would have been very easy to target the Other text input directly using
$('#source5txt').focus(...) and have it directly target the radio button using its id
attribute. While that’s a perfectly functional approach, the code as shown previously
is more flexible. What if someone decided to change the id of the Other radio button?
What if each radio button had a text input? The abstract solution handles these cases
without additional work.

Why use .blur() instead of .focus() on the text input? While .focus() would be more
immediate for selecting the associated radio button, if the user were simply tabbing
through the form elements, .focus() would accidentally select the radio button. Us-
ing .blur() and then checking for a value avoids this problem.

What will happen when JavaScript is disabled? The user will have to manually click
into the text input to start typing and manually select the radio button. You are left to

10.3 Selecting Radio Buttons Automatically | 217

decide how to validate and process submitted data should the user enter text and select
a different radio button.

10.4 (De)selecting All Checkboxes Using Dedicated Links
Problem
You need to select all checkboxes and deselect all checkboxes using dedicated Select
All and Deselect All links:

<fieldset>

 <legend>Reasons to be happy</legend>

 Select All
 Deselect All

 <input name="reasons" id="iwokeup" type="checkbox" value="iwokeup" />
 <label for="iwokeup">I woke up</label>

 <input name="reasons" id="health" type="checkbox" value="health" />
 <label for="health">My health</label>

 <input name="reasons" id="family" type="checkbox" value="family" />
 <label for="family">My family</label>

 <input name="reasons" id="sunshine" type="checkbox" value="sunshine" />
 <label for="sunshine">The sun is shining</label>

</fieldset>

Solution
Target the Select All and Deselect All links directly using their class attributes. Then
attach the appropriate .click() handler:

// find the "Select All" link in a fieldset and list for the click event
$('fieldset .selectAll').click(function(event){
 event.preventDefault();
 // find all the checkboxes and select them
 $(this).siblings('input:checkbox').attr('checked','checked');
});

// find the "Deselect All" link in a fieldset and list for the click event
$('fieldset .deselectAll').click(function(event){
 event.preventDefault();
 // find all the checkboxes and deselect them
 $(this).siblings('input:checkbox').removeAttr('checked');
});

218 | Chapter 10: HTML Form Enhancements from Scratch

Discussion
If you are interested in activating and deactivating the dedicated links, you should see
Recipe 10.5 in this chapter. In that solution, the individual checkboxes update the
toggle state, and you will need this logic to activate and deactivate the dedicated links
appropriately.

What will happen when JavaScript is disabled? You should hide the links by default in
CSS. Then use JavaScript to add a class name to a parent element that will override the
previous CSS rule:

<style type="text/css" title="text/css">
 .selectAll, .deselectAll { display:none; }
 .jsEnabled .selectAll, .jsEnabled .deselectAll { display:inline; }
</style>

...

// when the HTML DOM is ready
$(document).ready(function(){
 $('form').addClass('jsEnabled');
});

10.5 (De)selecting All Checkboxes Using a Single Toggle
Problem
You need to select and deselect all checkboxes using a single toggle, in this case another
checkbox. Additionally, that toggle should automatically switch states if some (or all)
of the checkboxes are selected individually:

<fieldset>

 <legend>Reasons to be happy</legend>

 <input name="reasons" id="toggleAllReasons" type="checkbox" class="toggle" />
 <label for="toggleAllReasons" class="toggle">Select All</label>

 <input name="reasons" id="iwokeup" type="checkbox" value="iwokeup" />
 <label for="iwokeup">I woke up</label>

 <input name="reasons" id="health" type="checkbox" value="health" />
 <label for="health">My health</label>

 <input name="reasons" id="family" type="checkbox" value="family" />
 <label for="family">My family</label>

 <input name="reasons" id="sunshine" type="checkbox" value="sunshine" />
 <label for="sunshine">The sun is shining</label>

</fieldset>

10.5 (De)selecting All Checkboxes Using a Single Toggle | 219

Solution
Target the toggle directly using its class attribute and the :checkbox selector. Then
cycle through each toggle found, determine the associated checkboxes us-
ing .siblings(), and attach the change event listeners:

// find the "Select All" toggle in a fieldset, cycle through each one you find
$('fieldset .toggle:checkbox').each(function(){

 // these are used more than once, let's store them to be more efficient
 // the toggle checkbox
 var $toggle = $(this);
 // the other checkboxes
 var $checkboxes = $toggle.siblings('input:checkbox');

 // listen for the change event on the toggle
 $toggle.change(function(){
 if (this.checked) {
 // if checked, select all the checkboxes
 $checkboxes.attr('checked','checked');
 } else {
 // if not checked, deselect all the checkboxes
 $checkboxes.removeAttr('checked');
 }
 });

 // listen for the change event on each individual checkbox (not toggle)
 $checkboxes.change(function(){
 if (this.checked) {
 // if this is checked and all others are checked, select the toggle
 if ($checkboxes.length == $checkboxes.filter(':checked').length) {
 $toggle.attr('checked','checked');
 }
 } else {
 // if not checked, deselect the toggle
 $toggle.removeAttr('checked');
 }
 }).eq(0).trigger('change'); // close change() then trigger change on first
checkbox only
}); // close each()

Discussion
Using .eq(0).trigger('change') immediately executes the .change() event for the first
checkbox. This sets the state of the toggle and protects against Firefox and other
browsers that hold on to radio and checkbox states when the page is refreshed.
The .eq(0) is used to only trigger the first checkbox’s change event. Without .eq(0),
the .trigger('change') would be executed for every checkbox, but since they all share
the same toggle, you only need to run it once.

What will happen when JavaScript is disabled? You should hide the toggle checkbox
and label by default in CSS. Then use JavaScript to add a class name to a parent element
that would override the previous CSS rule:

220 | Chapter 10: HTML Form Enhancements from Scratch

<style type="text/css" title="text/css">
 .toggle { visibility:hidden; }
 .jsEnabled .toggle { visibility:visible; }
</style>

...

// when the HTML DOM is ready
$(document).ready(function(){
 $('form').addClass('jsEnabled');
});

10.6 Adding and Removing Select Options
Problem
You have a drop-down box for colors and want to add new colors to it, as well as remove
options from it.

<label for="colors">Colors</label>
<select id="colors" multiple="multiple">
 <option>Black</options>
 <option>Blue</options>
 <option>Brown</options>
</select>

<button id="remove">Remove Selected Color(s)</button>

<label for="newColorName">New Color Name</label>
<input id="newColorName" type="text" />

<label for="newColorValue">New Color Value</label>
<input id="newColorValue" type="text" />

<button id="add">Add New Color</button>

Solution
To add a new option to the drop-down box, use the .appendTo() method:

// find the "Add New Color" button
$('#add').click(function(event){
 event.preventDefault();

 var optionName = $('#newColorName').val();
 var optionValue = $('#newColorValue').val();

 $('<option/>').attr('value',optionValue).text(optionName).appendTo('#colors');
});

10.6 Adding and Removing Select Options | 221

To remove an option, use the .remove() method:

// find the "Remove Selected Color(s)" button
$('#remove').click(function(event){
 event.preventDefault();

 var $select = $('#colors');

 $('option:selected',$select).remove();
});

Discussion
I use the .attr() and .text() methods to populate the <option> element:

$('<option/>').attr("value",optionValue).text(optionName).appendTo('#colors');

However, the same line could be rewritten so that the <option> element is built in one
step, without using the methods:

$('<option value="'+optionValue+'">'+optionName+'</option>').appendTo('#colors');

Concatenating all the <option> data like that would be a fraction of a millisecond faster,
but not in any way noticeable by a human. I prefer using the .attr() and .text()
methods to populate the <option> element because I think that it is more readable and
easier to debug and maintain. With the performance issue being negligible, using one
approach or the other is the developer’s preference.

What would happen with JavaScript disabled? You would need to provide a server-side
alternative that processes the button clicks, and the user would have to wait for the
resulting page reloads.

10.7 Autotabbing Based on Character Count
Problem
You have a form for allowing users to register a product online, and you require the
user to enter a serial number printed on the installation discs. This number is 16 digits
long and separated across four input fields. Ideally, to speed the user along in their data
entry, as each input field is filled up, you’d like to automatically focus the next input
field until they’re finished typing the number:

<fieldset class="autotab">
 <legend>Product Serial Number</legend>
 <input type="text" maxlength="4" />
 <input type="text" maxlength="4" />
 <input type="text" maxlength="4" />
 <input type="text" maxlength="4" />
</fieldset>

222 | Chapter 10: HTML Form Enhancements from Scratch

Solution
Inside <fieldset class="autotab">, find all the <input> elements. Use
jQuery’s .bind() method to listen for the keydown and keyup events. We exit the bound
function for a handful of keys that we want to ignore, because they aren’t meaningful
for automatically tabbing forward or backward. When an <input> element is full, based
on the maxlength attribute, we .focus() the next <input> element. Conversely, when
using the Backspace key, if an <input> element is made empty, we .focus() the previous
<input> element:

$('fieldset.autotab input').bind('keydown keyup',function(event){

 // the keycode for the key evoking the event
 var keyCode = event.which;

 // we want to ignore the following keys:
 // 9 Tab, 16 Shift, 17 Ctrl, 18 Alt, 19 Pause Break, 20 Caps Lock
 // 27 Esc, 33 Page Up, 34 Page Down, 35 End, 36 Home
 // 37 Left Arrow, 38 Up Arrow, 39 Right Arrow, 40 Down Arrow
 // 45 Insert, 46 Forward Delete, 144 Num Lock, 145 Scroll Lock
 var ignoreKeyCodes =
',9,16,17,18,19,20,27,33,34,35,36,37,38,39,40,45,46,144,145,';
 if (ignoreKeyCodes.indexOf(',' + keyCode + ',') > −1) { return; }

 // we want to ignore the backspace on keydown only
 // let it do its job, but otherwise don't change focus
 if (keyCode == 8 && event.type == 'keydown') { return; }

 var $this = $(this);
 var currentLength = $this.val().length;
 var maximumLength = $this.attr('maxlength');

 // if backspace key and there are no more characters, go back
 if (keyCode == 8 && currentLength == 0) {
 $this.prev().focus();
 }

 // if we've filled up this input, go to the next
 if (currentLength == maximumLength) {
 $this.next().focus();
 }
});

Discussion
Why do we bind both keydown and keyup events?

You could use just the keydown event. However, when the user is done filling out the
first input, there would be no visual indication that their next keystroke would focus
the second input. By using the keyup event, after the first input is filled, the second input
gains focus, the cursor is placed at the beginning of the input, and most browsers in-
dicate that focus with a border or some other highlight state. Also, the keyup event is

10.7 Autotabbing Based on Character Count | 223

required for the Backspace key to focus the previous input after the current input is
empty.

You could use just the keyup event. However, if your cursor was in the second input
and you were using the Backspace key to clear it, once you removed all characters, the
focus would be shifted into the first input. Unfortunately, the first is already full, so the
next keystroke would be lost, because of the maxlength attribute, and then the keyup
event would focus the second input. Losing a keystroke is a bad thing, so we perform
the same check on keydown, which moves the cursor to the next input before the char-
acter is lost.

Because the logic isn’t CPU intensive, we can get away with binding both the keydown
and keyup events. In another situation, you may want to be more selective.

You’ll notice that the ignoreKeyCodes variable is a string. If we were building it dynam-
ically, it would be faster to create an array and then use .join(',') or .toString()
JavaScript methods. But since the value is always the same, it’s easier to simply code it
as a string from the very beginning. I also start and end the ignoreKeyCodes variable
with commas, because I am paranoid about false positives. This way, when searching
for a keyCode flanked by commas, you are guaranteed to find only the number you’re
looking for—if you look for 9, it won’t find 19, or 39.

Notice there is no code to prevent $this.next().focus() from executing when on the
last <input> element. I’m taking advantage of the jQuery chain here. If $this.next()
finds nothing, then the chain stops—it can’t .focus() what it can’t find. In a different
scenario, it might make sense to precache any known .prev() and .next() elements.

What will happen when JavaScript is disabled? Nothing. The user will have to manually
click from one text input field to the next.

10.8 Displaying Remaining Character Count
Problem
Your company has a contact form on its website. This form has a <textarea> element
to allow users to express themselves freely. However, you know time is money, and
you don’t want your staff reading short novels, so you would like to limit the length of
the messages they have to read. In the process, you’d also like to show the end user
how many characters are remaining:

<textarea></textarea>
<div class="remaining">Characters remaining: 300</div>

224 | Chapter 10: HTML Form Enhancements from Scratch

Solution
Target all .remaining messages, and for each find the associated <textarea> element
and the maximum number of characters as listed in the .count child element. Bind an
update function to the <textarea> to capture when the user enters text:

// for each "Characters remaining: ###" element found
$('.remaining').each(function(){

 // find and store the count readout and the related textarea/input field
 var $count = $('.count',this);
 var $input = $(this).prev();

 // .text() returns a string, multiply by 1 to make it a number (for math)
 var maximumCount = $count.text()*1;

 // update function is called on keyup, paste and input events
 var update = function(){

 var before = $count.text()*1;
 var now = maximumCount - $input.val().length;

 // check to make sure users haven't exceeded their limit
 if (now < 0){
 var str = $input.val();
 $input.val(str.substr(0,maximumCount));
 now = 0;
 }

 // only alter the DOM if necessary
 if (before != now){
 $count.text(now);
 }
 };

 // listen for change (see discussion below)
 $input.bind('input keyup paste', function(){setTimeout(update,0)});

 // call update initially, in case input is pre-filled
 update();

}); // close .each()

Discussion
The preceding code is generic enough to allow for any number of “Character remain-
ing” messages and <textarea> elements on a given page. This could be useful if you
were building a content management or data entry system.

To protect against when the user attempts to copy and paste data into the <textarea>
using a mouse, we need to bind both the input and paste events. The mouseup event
cannot be used because it is not triggered when selecting an item from the browser’s
contextual menu. The input event is part of HTML5 (Working Draft) and already

10.8 Displaying Remaining Character Count | 225

implemented by Firefox, Opera, and Safari. It fires on user input, regardless of input
device (mouse or keyboard). Safari, at the time of this writing, has a bug and does not
fire the input event on <textarea> elements. Both Safari and Internet Explorer under-
stand the paste event on <textarea> elements and understand keyup to capture key-
strokes. Attaching keyup, input, and paste is redundant but, in this case, benign. The
update function is simple enough that there aren’t any performance issues, and it only
manipulates the DOM when needed, so any redundant update calls after the first would
do nothing.

An alternative to redundant events would be to use setInterval when the <textarea>
element has focus. The same update function could be called from the interval, and if
it is paired with the keyup event, you’d get the immediate updating on key presses and
an arbitrary update interval, say 300 milliseconds, for when information is pasted into
the <textarea> element. If the update function were more complex or costly, this might
be a better alternative.

When binding events to form elements, it is sometimes important to use a timeout to
slightly delay a function call. In the previous example, Internet Explorer triggers the
paste event before the text from the clipboard is actually added to the <textarea> ele-
ment. Thus, the calculation for characters remaining would be incorrect until the user
clicks or presses another key. By using setTimeout(update,0), the update function is
placed at the end of the call stack and will fire after that browser has added the text:

$input.bind('input keyup paste', function(){setTimeout(update,0)});

What will happen when JavaScript is disabled? You should hide the “Characters re-
maining” message by default in CSS. Then use JavaScript to add a class name to a parent
element that would override the previous CSS rule. Also, it’s important to check the
length of the message again on the server side:

<style type="text/css" title="text/css">
 .remaining { display:none; }
 .jsEnabled .remaining { display:block; }
</style>

...

// when the HTML DOM is ready
$(document).ready(function(){
 $('form').addClass('jsEnabled');
});

10.9 Constraining Text Input to Specific Characters
Problem
Your shopping cart page has a quantity field, and you want to make sure users can only
enter numbers into that field:

226 | Chapter 10: HTML Form Enhancements from Scratch

<input type="text" class="onlyNumbers" />

Solution
Find all elements with the onlyNumbers class, and listen for keydown and blur events.
The keydown event handler will prevent users from typing non-numeric characters into
the field. The blur event handler is a precautionary measure that cleans any data entered
via Paste from the contextual menu or the browser’s Edit menu:

$('.onlyNumbers').bind('keydown',function(event){

 // the keycode for the key pressed
 var keyCode = event.which;

 // 48-57 Standard Keyboard Numbers
 var isStandard = (keyCode > 47 && keyCode < 58);

 // 96-105 Extended Keyboard Numbers (aka Keypad)
 var isExtended = (keyCode > 95 && keyCode < 106);

 // 8 Backspace, 46 Forward Delete
 // 37 Left Arrow, 38 Up Arrow, 39 Right Arrow, 40 Down Arrow
 var validKeyCodes = ',8,37,38,39,40,46,';
 var isOther = (validKeyCodes.indexOf(',' + keyCode + ',') > −1);

 if (isStandard || isExtended || isOther){
 return true;
 } else {
 return false;
 }

}).bind('blur',function(){

 // regular expression that matches everything that is not a number
 var pattern = new RegExp('[^0-9]+', 'g');

 var $input = $(this);
 var value = $input.val();

 // clean the value using the regular expression
 value = value.replace(pattern, '');
 $input.val(value)
});

Discussion
The keydown event is immediate and prevents users from typing non-numeric characters
into the field. This could be replaced with a keyup event that shares the same handler
as the blur event. However, users would see a non-numeral appear and then quickly
disappear. I prefer just to prevent them from entering the character in the first place
and avoid the flickering.

10.9 Constraining Text Input to Specific Characters | 227

The blur event protects against copying and pasting non-numeric characters into the
text field. In the previous scenario, I’m assuming the user is either trying to test the
limits of the JavaScript (something that I would do) or trying to copy and paste data
from a spreadsheet. Neither situation requires immediate correction in my opinion.
However, if your situation requires more immediate correction, please see the
“Discussion” section of Recipe 10.8 for more information about capturing changes
from the paste event.

If your situation is different and you expect users to be copying and pasting data from
a spreadsheet, keep in mind that the regular expression I use does not account for a
decimal point. So, a number like “1,000” would be cleaned to “1000” and the number
“10.00” would also be cleaned to “1000” as well.

You’ll notice that the validKeyCodes variable is a string that starts and ends with com-
mas. As I mentioned in Recipe 10.7, I did this because I am paranoid about false pos-
itives—when searching for a keyCode flanked by commas, you are guaranteed to find
only the number you’re looking for.

What will happen when JavaScript is disabled? The user will be able to enter any char-
acters they please. Always be sure to validate code on the server. Don’t rely on JavaScript
to provide clean data.

10.10 Submitting a Form Using Ajax
Problem
You have a form that you would like to submit using Ajax:

<form action="process.php">

 <!-- value changed via JavaScript -->
 <input type="hidden" name="usingAJAX" value="false" />

 <label for="favoriteFood">What is your favorite food?</label>
 <input type="text" name="favoriteFood" id="favoriteFood" />

 <input type="submit" value="Tell Us" />

</form>

Solution
Find the <form> element, and hijack the submit event:

$('form').submit(function(event){

 // we want to submit the form using Ajax (prevent page refresh)
 event.preventDefault();

 // this is where your validation code (if any) would go

228 | Chapter 10: HTML Form Enhancements from Scratch

 // ...

 // this tells the server-side process that Ajax was used
 $('input[name="usingAJAX"]',this).val('true');

 // store reference to the form
 var $this = $(this);

 // grab the url from the form element
 var url = $this.attr('action');

 // prepare the form data to send
 var dataToSend = $this.serialize();

 // the callback function that tells us what the server-side process had to say
 var callback = function(dataReceived){

 // hide the form (thankfully we stored a reference to it)
 $this.hide();

 // in our case the server returned an HTML snippet so just append it to
 // the DOM
 // expecting: <div id="result">Your favorite food is pizza! Thanks for
 // telling us!</div>
 $('body').append(dataReceived)
 };

 // type of data to receive (in our case we're expecting an HTML snippet)
 var typeOfDataToReceive = 'html';

 // now send the form and wait to hear back
 $.get(url, dataToSend, callback, typeOfDataToReceive)

}); // close .submit()

Discussion
What will happen when JavaScript is disabled? The form will be submitted, and the
entire page will refresh with the results from the server-side script. I use JavaScript to
alter the value of the <input type="hidden" name="usingAJAX" /> element from false
to true. This allows the server-side script to know what to send back as a response—
either a full HTML page or whatever data is expected for the Ajax response.

10.11 Validating Forms
Problem
You have a form that you would like to validate. To get started, you’ll want to set up
some basic CSS. The only styles that are really important for this enhancement are the
display:none declaration of the div.errorMessage selector and the display:block

10.11 Validating Forms | 229

declaration of the div.showErrorMessage selector. The rest are just to make things look
better:

<style type="text/css" title="text/css">
 div.question {
 padding: 1em;
 }
 div.errorMessage {
 display: none;
 }
 div.showErrorMessage {
 display: block;
 color: #f00;
 font-weight: bold;
 font-style: italic;
 }
 label.error {
 color: #f00;
 font-style: italic;
 }
</style>

The following HTML snippet is one example of how you might structure this form.
The <div class="question> element is purely for layout and not important for the val-
idation code. Each <label> element’s for attribute associates it with the form element
with that identical id attribute. That is standard HTML, but I wanted to call it out
because the JavaScript will also be using that (in reverse) to find the correct <label> for
a given form element. Similarly, you’ll notice the error messages have an id attribute
of errorMessage_ plus the name attribute of the associated form element. This structure
may seem redundant, but radio buttons and checkboxes are grouped by the name at-
tribute and you’d only want to have one error message per such group:

<form action="process.php">

<!-- TEXT -->
<div class="question">
 <label for="t">Username</label>
 <input id="t" name="user" type="text" class="required" />
 <div id="errorMessage_user" class="errorMessage">Please enter your username.</div>
</div>

<!-- PASSWORD -->
<div class="question">
 <label for="p">Password</label>
 <input id="p" name="pass" type="password" class="required" />
 <div id="errorMessage_pass" class="errorMessage">Please enter your password.</div>
</div>

<!-- SELECT ONE -->
<div class="question">
 <label for="so">Favorite Color</label>
 <select id="so" name="color" class="required">
 <option value="">Select a Color</option>
 <option value="ff0000">Red</option>

230 | Chapter 10: HTML Form Enhancements from Scratch

 <option value="00ff00">Green</option>
 <option value="0000ff">Blue</option>
 </select>
 <div id="errorMessage_color" class="errorMessage">Please select your favorite
color.</div>
</div>

<!-- SELECT MULTIPLE -->
<div class="question">
 <label for="sm">Favorite Foods</label>
 <select id="sm" size="3" name="foods" multiple="multiple" class="required">
 <option value="pizza">Pizza</option>
 <option value="burger">Burger</option>
 <option value="salad">Salad</option>
 </select>
 <div id="errorMessage_foods" class="errorMessage">Please choose your favorite
foods.</div>
</div>

<!-- RADIO BUTTONS -->
<div class="question">
 Writing Hand:
 <input id="r1" type="radio" name="hand" class="required"/>
 <label for="r1">Left</label>
 <input id="r2" type="radio" name="hand" class="required" />
 <label for="r2">Right</label>
 <div id="errorMessage_hand" class="errorMessage">Please select what hand you
write with.</div>
</div>

<!-- TEXTAREA -->
<div class="question">
 <label for="tt">Comments</label>
 <textarea id="tt" name="comments" class="required"></textarea>
 <div id="errorMessage_comments" class="errorMessage">Please tell us what you
think.</div>
</div>

<!-- CHECKBOX -->
<div class="question">
 <input id="c" type="checkbox" name="legal" class="required" />
 <label for="c">I agree with the terms and conditions</label>
 <div id="errorMessage_legal" class="errorMessage">Please check the box!</div>
</div>

<input type="submit" value="Continue" />

</form>

Solution
The first part of the solution is fairly straightforward. Find the <form> element, and
hijack the submit event. When the form is submitted, iterate through the required form

10.11 Validating Forms | 231

elements, and check to see whether the required elements are valid. If the form is error
free, then (and only then) trigger the submit event:

$('form').submit(function(event){

 var isErrorFree = true;

 // iterate through required form elements and check to see if they are valid
 $('input.required, select.required, textarea.required',this).each(function(){
 if (validateElement.isValid(this) == false){
 isErrorFree = false;
 };
 });

 // Ajax alternatives:
 // event.preventDefault();
 // if (isErrorFree){ $.get(url, data, callback, type) }
 // if (isErrorFree){ $.post(url, data, callback, type) }
 // if (isErrorFree){ $.ajax(options) }

 return isErrorFree;

}); // close .submit()

The second part of this solution is where all the real validation happens. The
isValid() method starts by storing frequently used data from the element we’re vali-
dating. Then, in the switch() statement, the element is validated. Finally, class names
are added to or removed from the <label> and div.errorMessage elements.

var validateElement = {

 isValid:function(element){

 var isValid = true;
 var $element = $(element);
 var id = $element.attr('id');
 var name = $element.attr('name');
 var value = $element.val();

 // <input> uses type attribute as written in tag
 // <textarea> has intrinsic type of 'textarea'
 // <select> has intrinsic type of 'select-one' or 'select-multiple'
 var type = $element[0].type.toLowerCase();

 switch(type){
 case 'text':
 case 'textarea':
 case 'password':
 if (value.length == 0 ||
value.replace(/\s/g,'').length == 0){ isValid = false; }
 break;
 case 'select-one':
 case 'select-multiple':
 if(!value){ isValid = false; }
 break;

232 | Chapter 10: HTML Form Enhancements from Scratch

 case 'checkbox':
 case 'radio':
 if($('input[name="' + name +
'"]:checked').length == 0){ isValid = false; };
 break;
 } // close switch()

 // instead of $(selector).method we are going to use $(selector)[method]
 // choose the right method, but choose wisely
 var method = isValid ? 'removeClass' : 'addClass';

 // show error message [addClass]
 // hide error message [removeClass]
 $('#errorMessage_' + name)[method]('showErrorMessage');
 $('label[for="' + id + '"]')[method]('error');

 return isValid;

 } // close validateElement.isValid()
}; // close validateElement object

Discussion
The validation in this solution is quite simple. It checks the following:

• <input type="text">, <input type="password">, and <textarea> elements have
some data other than whitespace.

• <select> elements have something other than the default option selected. Please
note that there are two types of <select> element: “select-one” and “select-
multiple” (see the second code snippet in this section for HTML code and the
previous code snippet for JavaScript validation). The first <option> element of the
“select-one” <select> must have a value="" in order for validation to work. The
“select-multiple” <select> is immune from this requirement because its <option>
elements can be deselected.

• <input type="radio"> and <input type="checkbox"> elements have at least one el-
ement checked in their respective name groups.

The switch(){} statement is used because it is more efficient than multiple if(){}else
if(){} statements. It also allows for elements with shared validation to be grouped
together, letting the break; statement separate these groups.

The validateElement object is in the global scope with the intention that it might be
reused on other forms. It also keeps the global scope less cluttered by containing the
validation methods—in the future, helper methods could be added to the
validateElement object without worrying about global naming collisions. For instance,
a stripWhitespace() method could be implemented like this:

var validateElement = {

 stripWhitespace : function(str){
 return str.replace(/\s/g,'');

10.11 Validating Forms | 233

 },
 isValid : function(element){

 //... snipped code ...//

 case 'text':
 case 'textarea':
 case 'password':
 // if text length is zero after stripping whitespace, it's not valid
 if (this.stripWhitespace(value).length == 0){ isValid = false; }
 break;

 //... snipped code ...//

 } // close validateElement.isValid()
}; // close validateElement object

When showing and hiding error messages, I used the bracket notation for calling
the .addClass() and .removeClass() jQuery methods:

// instead of $(selector).method we are going to use $(selector)[method]
// choose the right method, but choose wisely
var method = isValid ? 'removeClass' : 'addClass';

// show error message [addClass]
// hide error message [removeClass]
$('#errorMessage_' + name)[method]('showErrorMessage');
$('label[for="' + id + '"]')[method]('error');

The previous code in bracket notation is functionally identical to the dot notation:

if (isValid) {
 $('#errorMessage_' + name).removeClass('showErrorMessage');
 $('label[for="' + id + '"]').removeClass('error');
} else {
 $('#errorMessage_' + name).addClass('showErrorMessage');
 $('label[for="' + id + '"]').addClass('error');
}

When we validate on submit, the dot notation is cleaner and more readable. However,
let’s extend the bracket-notation solution to allow elements to revalidate (after an initial
validation) using the change event. This would give the user immediate feedback that
their new answers are in fact valid, without requiring them to click the submit button.
The following code does not work as expected (see the next paragraph for the real
solution), but it illustrates where to .unbind() and .bind() the change event:

// instead of $(selector).method we are going to use $(selector)[method]
// choose the right method, but choose wisely
var method = isValid ? 'removeClass' : 'addClass';

// show error message [addClass]
// hide error message [removeClass]
$('#errorMessage_' + name)[method]('showErrorMessage');
$('label[for="' + id + '"]')[method]('error');

234 | Chapter 10: HTML Form Enhancements from Scratch

// after initial validation, allow elements to re-validate on change
$element
 .unbind('change.isValid')
 .bind('change.isValid',function(){ validateElement.isValid(this); });

Because we are unbinding and binding the change event with each val-
idation, I added the .isValid event namespace to target it more directly.
This way, if a form element has other change events bound, they will
remain.

The problem with the previous code isn’t syntax but logic. You’ll note that the radio
buttons in the HTML have the class="required" attribute. This means that when the
entire form is validated, each radio button is validated, and (more importantly) each
radio button’s <label> has a class added or removed to indicate the error. However, if
we allow for a revalidation to occur using the element-specific change event, only that
particular radio button’s <label> will be updated—the others would remain in an error
state. To account for this, a single change event would have to look at all radio buttons
and checkboxes in that name group to affect all the <label> classes simultaneously:

// instead of $(selector).method we are going to use $(selector)[method]
// choose the right method, but choose wisely
var method = isValid ? 'removeClass' : 'addClass';

// show error message [addClass]
// hide error message [removeClass]
$('#errorMessage_' + name)[method]('showErrorMessage');

if (type == 'checkbox' || type == 'radio') {

 // if radio button or checkbox, find all inputs with the same name
 $('input[name="' + name + '"]').each(function(){
 // update each input elements <label> tag, (this==<input>)
 $('label[for="' + this.id + '"]')[method]('error');
 });

} else {

 // all other elements just update one <label>
 $('label[for="' + id + '"]')[method]('error');

}

// after initial validation, allow elements to re-validate on change
$element
 .unbind('change.isValid')
 .bind('change.isValid',function(){ validateElement.isValid(this); });

If the preceding code were to be rewritten using dot-notation syntax, it would have
twice again as many lines. And on a separate note, with this new logic in place, only
one radio button (or checkbox) in a name group would need to have the

10.11 Validating Forms | 235

class="required" in order for all the other elements in that group to be adjusted
correctly.

What will happen when JavaScript is disabled? The form will be submitted without
client-side validation. Always be sure to validate code on the server. Don’t rely on
JavaScript to provide clean data. If the server-side code returns the form with errors, it
can use the same classes, on the same elements, in the same way. There is no need to
use inline style tags or write custom code to handle the server-side errors differently.

236 | Chapter 10: HTML Form Enhancements from Scratch

CHAPTER 11

HTML Form Enhancements
with Plugins

Jörn Zaefferer

11.0 Introduction
Forms are a very common interaction for users of web applications; improving this
interaction improves the business of the application.

jQuery and various plugins offer out-of-the-box and customizable solutions for better
interactions, with progressive enhancement at heart.

Each problem could be solved with a jQuery solution from scratch, but using a plugin
yields a lot of benefits:

• Avoids reinventing the wheel

• Provides functionality that is well tested among different browsers

• Saves a lot of work that hides in the details

• Provides functionality that is tuned to work under extreme conditions

Each recipe will discuss the strengths and weaknesses of the plugin, highlighting where
it may make sense to start from scratch instead.

Basic Approach
The basic approach to using jQuery plugins is always the same. First you include jQuery
itself, and then you include the plugin file on your page. Some plugins also need a
stylesheet. Most plugins require some markup to work with and a line of code that
selects this markup element and does something with it. Because of common naming
conventions, a plugin “slideshow” would be used like this:

<!DOCTYPE html>
<html>
<head>

237

 <link rel="stylesheet" href="jquery.slideshow.css"/>
 <script src="assets/jquery-latest.js"></script>
 <script src="assets/jquery.slideshow.js"></script>
 <script type="text/javascript">
 jQuery(document).ready(function($){
 $("#slideshow").slideshow();
 });
 </script>
</head>
<body>
 <div id="slideshow">...</div>
</body>
</html>

The specific markup necessary for a slideshow is quite different for a slider or form
validation, so that’s something to look out for in the documentation and examples of
each plugin, and that will be covered in the following recipes.

11.1 Validating Forms
Problem
Most registration forms require input of email address, a password (two times), a user-
name, and some other information, like a birth date. This applies to email services, web
shops, or forums.

It’s easy to imagine John Doe, who wants to buy a new monitor at some web shop
where the registration also requires the input of a captcha (a barely legible group of
random characters to tell the difference between a human and a bot). He fills out the
complete form, which takes some time, and then submits the form. After about five
seconds, the form is displayed again, with some error message at the top: he forgot to
fill out the street field. He fixes that and submits again. Another five seconds pass: now
he missed the password and captcha field! Huh? He did fill those in, but he had to fill
them in again after the failed first attempt.

Such late feedback can be very frustrating and can ruin an experience that was otherwise
good, especially when security concerns limit functionality—here causing the empty
password and captcha fields.

Solution
One way to improve the situation is to add client-side validation. The basic idea is to
give the user feedback as early as possible, without annoying him. It shouldn’t be pos-
sible to submit an invalid form, avoiding the issue of filling in passwords or captchas
again.

It also makes sense to highlight errors on fields after they are filled in, as in the case of
an invalid email address like john.doe@gmail,com. Highlighting fields as wrong doesn’t
help when it happens before the user even has the chance to fill out a field correctly: to

238 | Chapter 11: HTML Form Enhancements with Plugins

mailto:john.doe@gmail,com

display “too short” on a field that requires at least two characters, after the user types
the first character, isn’t helping at all.

A plugin covering these requirements quite well is the validation plugin.

To get started, download the plugin, extract the files, and copy jquery.validate.js to
your project. The following example shows a comment form with fields for name,
email, URL, and actual comment. A call to the plugin method validate() sets up the
validation for the form. Validation rules are specified inline using classes and attributes:

<!DOCTYPE html>
<html>
<head>
 <script src="assets/jquery-latest.js"></script>
 <script src="assets/jquery.validate.js"></script>
 <style type="text/css">
 * { font-family: Verdana; font-size: 96%; }
 label { width: 10em; float: left; }
 label.error { float: none; color: red; padding-left: .5em; vertical-align: top; }
 div { clear: both; }
 input, textarea { width: 15em; }
 .submit { margin-left: 10em; }
 </style>
 <script type="text/javascript">
 jQuery(document).ready(function($){
 $("#commentForm").validate();
 });
 </script>
</head>
<body>
 <form id="commentForm" method="get" action="">
 <fieldset>
 <legend>A simple comment form with submit validation and default messages</legend>
 <div>
 <label for="cname">Name</label>
 <input id="cname" name="name" class="required" minlength="2" />
 </div>
 <div>
 <label for="cemail">E-Mail</label>
 <input id="cemail" name="email" class="required email" />
 </div>
 <div>
 <label for="curl">URL (optional)</label>
 <input id="curl" name="url" class="url" value="" />
 </div>
 <div>
 <label for="ccomment">Your comment</label>
 <textarea id="ccomment" name="comment" class="required"></textarea>
 </div>
 <div>
 <input class="submit" type="submit" value="Submit"/>
 </div>
 </fieldset>
 </form>

11.1 Validating Forms | 239

http://jquery-cookbook.com/go/plugin-validation

</body>
</html>

Any field with the class required is checked to have any content at all. Other methods
in this example include the following:

email
Checks that the field contains a valid email address

url
Checks that the field contains a valid URL

minlength
Checks that the field contains at least x characters; here x is specified via an
attribute: minlength="2"

Discussion
The validation plugin promotes one specific approach to client-side validation: perform
as much work as possible in the browser, and ask the server for help only in special
cases, which are covered by the remote method, for example, to check whether a user-
name is still available.

A different approach would avoid replicating validation rules and methods on both the
client and server sides, instead sending the whole form via Ajax to the server, usually
on submit of the form. It could then use the same logic on the server side that is in place
already. The drawback is that user feedback is slower, because it is impractical to send
a request for every keypress. It’s also not very likely that the server validation was written
with Ajax validation in mind, making it impractical to reuse it. In that case, you’d have
to plan up front to use it that way.

The validation plugin can be added to a form later, and apart from remote validation,
there is no need to adapt the application in any way. This makes it useful for a simple
comment form on a blog, as well as more complex forms on some intranet application
and anything in between.

The most important building blocks for the plugin are rules and methods. Methods
contain validation logic, like the email method that uses a regular expression to deter-
mine whether a value is a valid email address. Rules wire input fields together with
methods, where a single rule is a pair of an input field and a method. The email field
then has one rule for making it required and one for making it an email address.

Methods

The plugin has about 19 built-in methods. The essential method is required—when
specified, the field has to be filled out. When left out, most other methods will be
ignored on an empty field. The only exception to that is the equalTo method, which
checks that the content of a field is exactly the same as some other field, which even

240 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/plugin-validation-remote-method

applies for an empty field. The rule itself is most commonly used for “Confirm pass-
word” fields.

The email, url, date, dateISO, dateDE, number, numberDE, digits, and creditcard meth-
ods all check for certain data types, with simple variations for different locales. For
example, number requires a U.S. number format like 1,000.00, and numberDE requires
the German number format 1.000,00.

The min and max and range methods check the value of a number, while minlength,
maxlength, and rangelength check the number of characters.

In case of a select input or checkboxes, min, max, and range validate the number of
selected options or checked checkboxes.

In case of file inputs, the accept method comes in handy and checks the file extension,
by default looking for .gif, .png, .jpg, or .jpeg.

The remote method is the only method that delegates the actual validation logic else-
where, to the server side. It gets a URL as the parameter, pointing at some server-side
resource. This could be a script that does a database query, for example, for checking
if a username is already taken or if a specified email address is already registered. An
example of a registration form using the remote method for both username and email
fields can be found at http://jquery-cookbook.com/go/plugin-validation-remote-demo.

Custom methods are a good way to extend the plugin with application-
specific requirements. You may have a form where users enter URLs that have to start
with a certain corporate domain. A custom method could encapsulate the necessary
validation:

jQuery.validator.addMethod("domain", function(value, element) {
 return this.optional(element) || /^http:\/\/mycorporatedomain.com/.test(value);
}, "Please specify the correct domain for your documents");

The first argument to jQuery.validator.addMethod is the name of the custom method,
and it must be a valid JavaScript identifier. The second argument is a function that
implements the actual validation. If it returns true, the input is considered valid. It uses
this.optional(element) to determine whether that input has no value and should
therefore be skipped—all default methods use the same call. The third argument speci-
fies the default message for the new method.

Writing methods that accept a parameter works very similarly:

jQuery.validator.addMethod("math", function(value, element, params) {
 return this.optional(element) || value == params[0] + params[1];
}, jQuery.format("Please enter the correct value for {0} + {1}"));

In this case, the default message is specified with the help of jQuery.format, a templating
helper the plugin provides. The indexed curly-braced placeholders are replaced with
the actual parameters when the validation is run.

Custom methods.

11.1 Validating Forms | 241

http://jquery-cookbook.com/go/plugin-validation-remote-demo

Custom methods can also reuse existing methods, which is useful to specify different
default messages for a single method. In this example, the required method is aliased
to customerRequired with a different default message:

$.validator.addMethod("customerRequired", $.validator.methods.required,
"Customer name required");

A collection of ready-to-use custom methods are bundled with the plugin in
additionalMethods.js.

Rules

There are four distinct ways to specify rules: two in code and two inline as metadata.
The previous example uses classes and attributes as metadata, which the plugin sup-
ports by default. When the metadata plugin is available, rules can be embedded in
various ways, for example, inside the class attribute:

<input type="text" name="email" class="{required:true, email:true}" />

Here the class contains JavaScript literals inside curly braces, which is very similar in
syntax to specifying rules in code via the rules option:

$("#myform").validate({
 rules: {
 name: {
 required: true,
 minlength: 2
 },
 email: {
 required: true,
 email: true
 },
 url: "url",
 comment: "required"
 }
});

The object keys like name, email, url, and comment always refer to the name of the ele-
ment, not the ID.

Note the shortcuts used for url and comment, where only a single rule is necessary. This
isn’t available when specifying rules with parameters, like minlength.

Some rules need to be added later, which is possible using the fourth way, the rules
plugin method:

// initialize the validation first
$("#myform").validate();
// some time later, add more rules
$("#username").rules("add", { minlength: 2});

Rules can also be removed that way:

$("#username").rules("remove", "required");

242 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/plugin-metadata

This can come in handy when implementing a “Forgot password” link on a login form:

$("#loginform").validate({
 username: "required",
 password: "required"
});
$("a#forgotPassword").click(function(e) {
 $("#password").rules("remove", "required");
 $("#loginform").submit();
 $("#password").rules("add", "required");
 return false;
});

That click event code removes the required rule from the password, tries to submit the
form (triggering the validation), and adds the rule back. That way, the username field
is still being validated, and if the validation fails, the password field will be required
again (in case of a normal form submit).

Often the validation behavior of a field depends on some more factors
than just a link being clicked. Those can be handled using parameters for the
required method. The parameter can be a selector or a callback. The selector is useful
when the dependency can be written in a simple expression. An email field may be
required only when the newsletter checkbox is selected:

email: {
 required: "#newsletter:checked"
}

A callback can be used for expressions of any complexity, for example, when the field
depends on the state of multiple other fields:

email: {
 required: function(element) {
 return $("#newsletter:checked").length && $("#telephone:blank");
 }
}

The previous example used the :blank expression to select an element
only when it has no value at all or only whitespace. The plugin also provides
the :filled expression, the inversion of :blank. jQuery itself provides :checked, and
the validation plugin adds the inversion :unchecked. Both are useful when specifying
dependencies on radio buttons or checkboxes.

While you could use the :not expression to inverse :filled or :checked, :blank
and :unchecked make the selector more readable and therefore easier to understand at
a glance.

Error messages

Similar to rules, there are a few ways to specify messages, both in code and inline. Inline
messages are read from the title attribute:

Dependencies.

Custom expressions.

11.1 Validating Forms | 243

<input name="email" class="required email" title="A valid email address is
required" />

That will produce a single error message for each rule. An alternative inline approach
is to use the metadata plugin (see “Rules” on page 242):

<input name="email" class="{required:true, email:true, messages:{required:"Required",
email: "Not a valid email address"}}"/>

With this approach, you can specify a message for each rule, which is also possible
when using the messages option:

$("#myform").validate({
 messages: {
 email: {
 required: "Required",
 email: "Not a valid email address"
 }
 }
});

Again, the keys—here, email—refer to the name of the input, not the ID, just the same
as specifying rules.

For more dynamic scenarios, the rules plugin method can be used:

$("#myform").validate();
// sometime later
$("#email").rules("add", {
 messages: {
 email: "A valid email address, please!"
 }
});

If you use some of the alternatives to the title attribute while using a regular title, you
can suppress the plugin from checking the attribute for messages:

$("#myform").validate({
 ignoreTitle: true
});

The default messages are in English (with the exception of dateDE and
numberDE). In addition, the plugin provides (at the time of this writing) 17 localizations.
Usage is plain and simple: just copy the messages_xx.js file you need to your project,
and include it after the validation plugin. For example, here’s the code for the Swedish
localization:

<script src="assets/jquery-latest.js"></script>
<script src="assets/jquery.validate.js"></script>
<script src="assets/messages_se.js.js"></script>

With that in place, instead of “Please enter a valid email address.” you’ll get “Ange en
korrekt e-postadress.”

By default error messages are inserted into the DOM next to the element
that they are referring to. An error message is inserted as a label element, with the for

Localization.

Error element.

244 | Chapter 11: HTML Form Enhancements with Plugins

attribute set to the id of the validated element. Using a label with the for attribute
leverages the browser feature where a click on the label gives focus to the input field.
So by default, the user can click the error message to give the invalid field focus.

If you need a different element type, use the errorElement option:

$("#myform").validate({
 errorElement: "em"
});

The plugin will still use the for attribute then, but the auto linking the browser provides
won’t work.

If you want to customize the position where error messages are inserted, the
errorPlacement option is useful. We may have a form that uses a table for layout, where
the first column contains the regular label, the second the input, and the third the
messages:

<form id="signupform" method="get" action="">
 <table>
 <tr>
 <td class="label">
 <label id="lfirstname" for="firstname">First Name</label>
 </td>
 <td class="field">
 <input id="firstname" name="firstname" type="text" value=""
maxlength="100" />
 </td>
 <td class="status"></td>
 </tr>
 <!-- more fields -->
 </table>
</form>

$("#signupform").validate({
 errorPlacement: function(error, element) {
 error.appendTo(element.parent("td").next("td"));
 }
});

Another common requirement is to display a general message above the form. The
errorContainer option helps with that:

$("#myform").validate({
 errorContainer: "#messageBox1"
});

In this example, an element with the ID messageBox1 would be shown when the form
is invalid and would be hidden when valid.

This can also be combined with the errorLabelContainer option. When specified, error
labels aren’t placed next to their input elements but instead added to a single element
above or below the form. Combined with the errorContainer and wrapper options,
messages are added to a list of errors above the form:

Layout.

11.1 Validating Forms | 245

<div class="container">
 <h4>There are a few problems, please see below for details.</h4>

</div>
<form id="myform" action="">
<!-- form content -->
</form>

var container = $('div.container');
// validate the form when it is submitted
$("#myform").validate({
 errorContainer: container,
 errorLabelContainer: $("ul", container),
 wrapper: 'li'
});

Handling the submit

Once the form is valid, it has to be submitted. By default that just works as any other
form submit. To submit the form via Ajax, the submitHandler option can be used, to-
gether with the form plugin (see Recipe 11.6 for more details):

$(".selector").validate({
 submitHandler: function(form) {
 $(form).ajaxSubmit();
 }
});

The invalidHandler callback is useful for running code on an invalid submit. The fol-
lowing example displays a summary of the missing fields:

$("#myform").validate({
 invalidHandler: function(e, validator) {
 var errors = validator.numberOfInvalids();
 if (errors) {
 var message = errors == 1
 ? 'You missed 1 field. It has been highlighted below'
 : 'You missed ' + errors + ' fields. They have been highlighted below';
 $("div.error span").html(message);
 $("div.error").show();
 } else {
 $("div.error").hide();
 }
 }
});

The Marketo demo shows this behavior in action (http://jquery-cookbook.com/go/plu
gin-validation-marketo-demo).

Limitations

So, when does it make sense to not use the plugin and write a validation solution from
scratch? There are certain limitations: forms where groups of inputs, like checkboxes,
have different name attributes are hard to validate as a group. Lists of inputs that all have

246 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/plugin-validation-marketo-demo
http://jquery-cookbook.com/go/plugin-validation-marketo-demo

the same name can’t be validated, because each individual input needs its own unique
name. If you stick with the naming convention of unique names for individual inputs
and one name for groups of checkboxes or radio buttons, the plugin works fine.

If your application has only a login form, the plugin is probably overkill, and it would
be difficult to justify the file size; however, if you use the plugin somewhere else on a
site, it can be used for the login form as well.

11.2 Creating Masked Input Fields
Problem
There are certain input types that are quite error prone, like a credit card number. A
simple typo that goes unnoticed at first can cause weird errors much later. That also
applies to dates or phone numbers. These have a few features in common:

• A fixed length

• Mostly numbers

• Delimiting characters at certain positions

Solution
A jQuery plugin that can improve the feedback is the masked input plugin. It is applied
to one or more inputs to restrict what can be entered while inserting delimiters auto-
matically.

In this example, a phone input is masked:

<!DOCTYPE html>
<html>
<head>
 <script src="assets/jquery-latest.js"></script>
 <script src="assets/jquery.maskedinput.js"></script>
 <script>
 jQuery(document).ready(function($) {
 $("#phone").mask("(999) 999-9999");
 });
 </script>
</head>
<body>
 <form>
 <label for="phone">Phone</label>
 <input type="text" name="phone" id="phone" />
 </form>
</body>
</html>

The plugin file is included in addition to jQuery itself. In the document-ready callback,
the input with ID phone is selected, and the mask method is called. The only argument
specifies the mask to use, here describing the format of a U.S. phone number.

11.2 Creating Masked Input Fields | 247

http://jquery-cookbook.com/go/plugin-masked-input

Discussion
There are four characters with a special meaning available when specifying the mask:

a
Any alpha character from a−z and A−Z

9
Any digit from 0–9

*
Any alphanumeric character, that is, a–z, A–Z, and 0–9

?
Anything after this is optional

Any other character, like the parentheses or hyphen in the phone mask, are considered
literals, which the plugin automatically inserts into the input and which the user can’t
remove.

By default, the plugin inserts an underscore (_) for each variable character. For the
phone example, the input would display the following value once focused:

(___) ___-____

When the user starts typing, the first underscore gets replaced if it is a valid character,
here a digit. The other literals are skipped as well.

The underscore placeholder can be customized by passing an additional argument:

$("#phone").mask("(999) 999-9999", {placeholder: " "});

In this case, whitespace would be displayed instead of the underscore.

It’s also possible to define new mask characters:

$.mask.definitions['~'] = '[+−]';
$("#eyescript").mask("~9.99 ~9.99 999");

Here the new mask character is a tilde, and allowed values for it are + and −, specified
as a regular expression character class. The tilde can then be used in a mask.

The quotation mark enables masks with a fixed part and an optional part. A phone
number with an optional extension could be defined like this:

$("#phone").mask("(999) 999-9999? x99999");

When a masked input is combined with the validation plugin (Recipe 11.1), it’s im-
portant the field proper rules are defined for it. Otherwise, the validation plugin may
accept the placeholder characters of the mask plugin as valid input, irritating the user
when an invalid field is marked as valid while he just inserted the first character.

248 | Chapter 11: HTML Form Enhancements with Plugins

Limitations

The significant limitation of the plugin is the fixed-length requirement. It can’t be used
for anything with a variable length, like currency value. For example, “$ 999,999.99”
would require a value between 100,000.00 and 999,999.99 and can’t accept anything
above or below.

11.3 Autocompleting Text Fields
Problem
There are two HTML input types that allow a user to select one value out of a list of
existing values: radio buttons and selects. Radio buttons work well for lists with up to
eight items, and selects work well with up to 30 to 150, depending on the type of data.
Both fall short when the user can enter a new value as well—in this case they are usually
accompanied by an “Other” field. Both become useless when the list is big, maybe 500
or 500,000 items.

Solution
The jQuery UI autocomplete widget can solve the various situations where a select isn’t
enough. In the simplest case, the data to display is available in a JavaScript array:

<label for="month">Select a month:</label>
<input id="month" name="month" />

var months = ['January', 'February', 'March', 'April', 'May', 'June', 'July',
'August', 'September', 'October', 'November', 'December'];
$("#month").autocomplete({
 source: months
});

Here we apply the autocomplete plugin to a month input, with the data being a plain
JavaScript array.

When the data isn’t already available on the client side, the plugin can get it from a
server-side resource:

$("#month").autocomplete({
 source: "addresses.php"
});

The plugin then sends a GET request to that resource, with the user-entered value
appended as the q parameter, e.g., addresses.php?q=ma. As a response, the plugin ex-
pects a list of newline separated values:

Mainstreet
Mallstreet
Marketstreet

11.3 Autocompleting Text Fields | 249

http://jquery-cookbook.com/go/widget-autocomplete

Discussion
The first decision to make when using the plugin is deciding on local or remote data.

With local data, the complete data set is already present in the browser’s memory. It
could have been loaded as part of the page or via a separate Ajax request. In any case,
it’s loaded just once. This mode is practical when the data is small and static—less than
500 rows of data—and doesn’t change while selecting a value. The big advantage of
local data is that it’s extremely fast to find matching values.

Remote data is loaded from the server in small chunks (up to 100 rows per chunk makes
sense). This works with both small data sets as well as very big data sets (say, more
than half a million rows). As the data is loaded from the server, finding matching values
is slower when compared to local data. This is mitigated by loading big enough chunks,
which can then be filtered down on the client side without additional requests.

11.4 Selecting a Range of Values
Problem
Imagine a car search interface: the user inputs the price range that’s acceptable for him,
and while changing the value, the list of available cars in that range is updated. The
HTML form elements for that type of input—plain text input, radio buttons, selects—
aren’t good enough. On the one hand, each requires an exact value. On the other, they
fail to visualize the price range. It’s also not possible to move the entire range; instead,
the user has to update both the start and end values, one by one.

Solution
The jQuery UI slider widget can transform two text inputs into a range slider. The start
and end values of the range can be dragged using the mouse or using the cursor keys.

The default slider is applied to a simple <div>, with no options necessary:

<div id="slider"></div>

$("#slider").slider();

For that to work, jQuery, jQuery UI core, and the slider .js files must be included, in
addition to a UI theme:

<link rel="stylesheet" href="ui.core.css" />
<link rel="stylesheet" href="ui.slider.css" />
<link rel="stylesheet" href="ui.theme.css" />
<script type="text/javascript" src="jquery-1.3.2.js"></script>
<script type="text/javascript" src="ui.core.js"></script>
<script type="text/javascript" src="ui.slider.js"></script>

While this adds a nice-looking slider to the page, it doesn’t yet really do anything useful.

250 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/widget-slider

In the case of the car search, we want to put the selected values into an input field and
display them to the user:

<p>
 <label for="amount">Price range:</label>
 <input type="text" id="amount" style="border:0; color:#f6931f;
font-weight:bold;" />
</p>

<div id="slider-range"></div>

Based on that markup, we can create a range slider:

var slider = $("#slider-range").slider({
 range: true,
 min: 0,
 max: 500,
 values: [75, 300],
 slide: function(event, ui) {
 $("#amount").val('$' + ui.values[0] + ' − $' + ui.values[1]);
 }
});
$("#amount").val('$' + slider.slider("values", 0) + ' − $' + slider.slider("values",
1));

Setting the range option to true instructs the plugin to create two handles instead of
just one. The min and max options specify the total range available; the values option
the starting positions.

The slide callback is triggered when a handle is moved. Here it updates the amount
input to display the selected price range.

Discussion
Binding a slider to a text input is one option; binding it to a select, and using the options
of the select as values, is another.

Let’s take the example of a room reservation form where the user enters the minimum
number of beds. The maximum number of beds is six; therefore, a slider isn’t a bad
choice to start with. Using progressive enhancement, we can enhance the select with a
slider and feed changes to the slider back to the <select> element:

<select name="minbeds" id="minbeds">
 <option>1</option>
 <option>2</option>
 <option>3</option>
 <option>4</option>
 <option>5</option>
 <option>6</option>
</select>

var select = $("#minbeds");
var slider = $('<div id="slider"></div>').insertAfter(select).slider({
 min: 1,
 max: 6,

11.4 Selecting a Range of Values | 251

 range: "min",
 value: select[0].selectedIndex + 1,
 slide: function(event, ui) {
 select[0].selectedIndex = ui.value − 1;
 }
});
$("#minbeds").click(function() {
 slider.slider("value", this.selectedIndex + 1);
});

Instead of using existing markup, which doesn’t have any semantic meaning, we gen-
erate the <div> on the fly and insert it into the DOM, right after the <select>.

We have a single value, so we use the value option instead of the values option. We
initialize it with the selectedIndex of the select, using the DOM property directly. The
property starts at zero, so we add one.

When the slider is updated, on keypresses or while dragging the handle with the mouse,
the select is updated by setting its selectedIndex to the value read from the ui object
passed to every ui event. The offset of one, which we added during initialization, is
now subtracted.

We also set the range option, even though we have only one handle. It accepts a string
parameter in addition to the Boolean: setting it to min displays the range from the start
of the slider to the handle; setting it to max displays it from the end of the slider to the
handle. This helps to visualize the minimum number of beds the hotel room should
have.

Finally, we bind a click event to the select to update the slider when the select itself is
changed directly by the user. We could also hide the select but would then need to add
another form of label to display the selected numerical value.

The plugin also supports two more options, which weren’t covered in the example:

• Setting animate: true animates the handle to move to the destination when clicking
somewhere on the slider.

• Setting orientation: vertical displays a vertical slider, instead of the horizontal
default.

There are also more events with more fine-grained control:

• start is called whenever sliding begins.

• stop is called when sliding stops.

• change is called when sliding stops and the slider value changes; this is especially
useful when a change to the slider triggers an expensive operation, such as sending
a request to the server, or updating a graph. Of course, it makes the slider behavior
less obvious, because there isn’t instant feedback while sliding.

252 | Chapter 11: HTML Form Enhancements with Plugins

11.5 Entering a Range-Constrained Value
Problem
A slider is good at handling rough inputs and visualizing them but bad for gathering
exact values. An example would be a pixel value in a layout component, where the
value has to be tuned in very small increments, pixel by pixel. With a standard input,
the keyboard has to be used: click the field, remove the current value and enter a new
value, repeat for each increment.

Solution
The jQuery UI spinner widget can solve this problem by adding up and down buttons
to the input to enable mouse interaction as well as handle keyboard events like cursor
up and down.

All you need is a regular text input:

<input id="value" name="value" />

to which you then apply the spinner plugin:

$("#value").spinner();

This will create and position the up/down buttons and add the necessary keyboard
handling events.

Use the spinner plugin to add buttons to in- and decrement the value, either by clicking
the buttons or giving the input focus and using the cursor keys.

It also restricts the input to numeric values—when entering abc into the spinner, it’ll
get replaced with the default value on blur. Unless specified otherwise, it’s a zero.

Discussion
The plugin offers a few options to restrict the input further:

• min sets the lower limit, e.g., −10 or 100.

• max sets the upper limit, e.g., 10 or 200.

• stepping restricts the value to certain increments, e.g., 5; the default is 1.

When the spinner is used to input a currency value, the currency option can be used
to display the appropriate symbol inside the input.

The following example puts these all together and creates a form for donating money:

<label for="currency">Currency</label>
<select id="currency" name="currency">
 <option value="$">US $</option>
 <option value="€">EUR €</option>
 <option value="¥">YEN ¥</option>
</select>

11.5 Entering a Range-Constrained Value | 253

http://jquery-cookbook.com/go/widget-spinner

<label for="amount">Select the amount to donate:</label>
<input id="amount" name="amount" value="5" />

We have a select for the currency and a text input for the amount:

var currency = $("#currency").change(function() {
 $("#amount").spinner("option", "currency", $(this).val()).blur();
});
$("#amount").spinner({
 currency: currency.val(),
 min: 5,
 max: 1000,
 step: 5
});

We bind a change event to the currency select to update the currency option of the
spinner whenever the selection changes.

The spinner itself is initialized with the current value, as well as limits for min, max, and
step, restricting the value somewhere between 5 and 1,000, with increments of 5, e.g.,
10, 15, 20, and so on.

Google Maps integration

The value may also be a decimal number; in that case, the decimal option can be used
to specify the number of allowed digits after the decimal point. In the following exam-
ple, we display a Google map and use spinners to specify the latitude and longitude
values.

To start with, we include the Google Maps API scripts:

<script type="text/javascript" src="http://maps.google.com/maps/api/js?
sensor=false"></script>

With that in place, we can add markup for the spinners and the actual map, along with
some minimal styles:

<style>
 #map { width:500px; height:500px; }
</style>

<label for="lat">Latitude</label>
<input id="lat" name="lat" value="44.797916" />

<label for="lng">Longitude</label>
<input id="lng" name="lng" value="-93.278046" />

<div id="map"></div>

Based on that, we can initialize the map and link it with the spinners:

function latlong() {
 return new google.maps.LatLng($("#lat").val(),$("#lng").val());
}
function position() {

254 | Chapter 11: HTML Form Enhancements with Plugins

 map.set_center(latlong());
}
$("#lat, #lng").spinner({
 precision: 6,
 change: position
});

var map = new google.maps.Map($("#map")[0], {
 zoom: 8,
 center: latlong(),
 mapTypeId: google.maps.MapTypeId.ROADMAP
});

The position function sets the center of the map to the latitude and longitude values
obtained from the spinners. They are initialized with the decimal option set to 6, and
passing the position function for the change option. With that, the map is updated
whenever one of the spinners changes. Then the map itself is initialized, using the
Google Maps API.

The drawback of the spinner in this case is that increments and decrements affect only
the digits before the decimal point, so scrolling is rather rough. The increment option
rounds any value below one up to one, so it can’t help here.

11.6 Uploading Files in the Background
Problem
File upload is part of many web applications but badly supported by browsers. The
biggest problem is the lack of feedback of the upload status, while any action of the
users disrupts the upload. A simple progress bar could improve the feedback but re-
quires quite some work on the server side, while the problem of disruptive actions
remains.

Solution
To improve the situation, file uploads should be performed in the background. This
allows the application to continue accepting other user input.

The jQuery form plugin makes it trivial to switch from the native browser upload to
Ajax background uploading. With this form:

<form id="uploadform">
 <input type="file" id="fileupload" name="fileupload" />
 <input type="submit" value="Upload!" />
</form>

all you need to add is a call to ajaxForm:

$("#uploadform").ajaxForm();

11.6 Uploading Files in the Background | 255

http://jquery-cookbook.com/go/plugin-form

However, just doing the upload in the background without any feedback of the com-
pleted upload isn’t enough, so we use the success option to display an alert about the
successful upload:

$("#uploadform").ajaxForm({
 success: function() {
 alert("Upload completed!");
 }
});

Discussion
The ajaxForm method binds itself to the submit event of the form, which allows it to
also include the button used to submit the form in the Ajax request. The latter isn’t
available when using ajaxSubmit. The ajaxSubmit method is useful on its own when the
form submit is handled elsewhere, for example, by the validation plugin. To integrate
validation and Ajax submit, ajaxSubmit should be used in the submitHandler option:

$("#commentform").validate({
 submitHandler: function(form) {
 $(form).ajaxSubmit({
 success: function() {
 $(form).clearForm();
 alert("Thanks for your comment!");
 }
 });
 }
});

In addition to the alert, the clearForm method, also provided by the form plugin,
removes all values from the form. This makes it easy for the user to upload another file.

11.7 Limiting the Length of Text Inputs
Problem
It is common to limit the amount of characters in a textarea, like the 140 characters for
Twitter or the 500 characters for a YouTube comment. Informing the user that he
entered too much, after he submitted a form, is frustrating, so it makes sense to display
an indicator of the available characters left.

Solution
The maxlength plugin solves this by adding a “Characters left: x” indicator in front or
after the textarea. The plugin, after being applied on a text input or textarea, looks for
an element with the class charsLeft to update with the count:

<form action="/comment">
 <p>Characters left: 10</p>
 <textarea name="commentbody" maxlength="10"></textarea>

256 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/plugin-maxlength

</form>

$('textarea').maxlength();

To make this less intrusive, we can create the necessary elements with jQuery, resulting
in a simpler form markup:

<form action="/comment">
 <textarea name="commentbody" maxlength="10"></textarea>
</form>

var textarea = $('textarea');
$('<p>Characters left: 10</p>').insertBefore(textarea);
textarea.maxlength();

Discussion
In the case of Twitter, the textarea allows you to go over the 140-character limit, but
you can’t submit. This helps a lot when pasting longer text that wouldn’t fit into the
140-character limit and editing it afterward. To get a similar effect with the maxlength
plugin, we can set the hardLimit option to false. However, that doesn’t affect the actual
submit but could be handled elsewhere, e.g., by the validation plugin (see Recipe 11.1).

The plugin also supports counting words instead of characters, by setting the words
option to true.

Instead of having the plugin look for the default .charsLeft selector, we can also set
the feedback option.

Here is another example using all three of these options:

<form action="/comment">
 <textarea name="commentbody" maxlength="10"></textarea>
 <p>x characters left</p>
</form>

$('textarea').maxlength({
 feedback: "p>span",
 hardLimit: false,
 words: true
});

11.8 Displaying Labels Above Input Fields
Problem
A page layout doesn’t have enough space in front of an input element to display a label,
the function of the input is obscured, and a title alone isn’t visible enough.

Search and login forms are often subject to space constraints. There just isn’t enough
visual space to display a label in front of the input field. Though without the label, the
function of the input is obscured. A title attribute isn’t enough to fix the problem,

11.8 Displaying Labels Above Input Fields | 257

because it’s rather hard to spot, requiring the user to mouse over the input and rest
there.

Solution
The most common example, the search field, can be solved by displaying “search”
inside the field with a light gray to emphasize that it’s just a label, not the actual text
to search for. When focusing the field, the text is removed. When blurring the field,
the text is returned, unless something else was entered.

The less common example is a space-constrained login form, consisting of username
and password fields. The password field needs to display the watermark as plain text,
while the password to be entered (or prefilled by the browser) must still be obfuscated.

In both cases, the watermark shouldn’t be submitted as a value.

The watermark plugin solves this problem by displaying a label element above the
actual input, hiding the label when the input gets focus, and displaying it again when
the empty field is blurred.

Using a label above the field, instead of modifying the text inside the field, makes this
solution also work with password fields and avoids having to clear watermark values
on submit.

The default usage calls the watermark plugin method and passes the value to display:

$("#search").watermark("Search");

Discussion
Instead of passing the value to the plugin, it can also be specified as metadata, using
the metadata plugin, in the markup, which is more practical when several watermarks
are used or when those are generated on the server side:

<form id="loginform">
 <input type="text" id="email" name="email"
class="{watermark:'E-Mail Address'}" />
 <input type="password" id="password" name="password"
class="{watermark:'Your password'}" />
</form>

$("#loginform input").watermark();

Metadata has the drawback that it doesn’t build on progressive enhancement. To
improve that, label elements should be used as for a normal form, with the plugin
positioning the labels at the right position:

<form id="loginform">
 <div>
 <label for="email">E-Mail Address</label>
 <input type="text" id="email" name="email" />
 </div>
 <div>

258 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/widget-watermark
http://jquery-cookbook.com/go/plugin-metadata

 <label for="password">Your password</label>
 <input type="password" id="password" name="password" />
 </div>
</form>

In this case, the plugin is applied to the labels instead of the inputs:

$("#loginform label").watermark();

The plugin then uses the for attribute of each label to find the associated input and
position it above the input.

11.9 Growing an Input with Its Content
Problem
A textarea is part of an interface and is often too large or too small, depending on the
user’s input. Either it’s too big and other important elements get out of sight, or it’s too
small and the user has to scroll too much.

Solution
Use the elastic plugin to start with a small default height and have the height autogrow
when the user enters a certain amount of text.

Usage is plain and simple. Start with a textarea:

<textarea id="commentbody"></textarea>

And apply the plugin to it:

$("#commentbody").elastic();

Discussion
The plugin binds both a timer and a blur event to the textarea to look for changes.
When the content changes, it copies the content into a hidden textarea with the same
styles applied to it as the original, calculates the new height for that, and if it exceeds
the current height of the original, starts an animation to adapt. This allows the textarea
to both grow and shrink as content is added or removed.

An alternative is to let the user resize the textarea. Safari offers that by default for any
textarea. The jQuery UI resizable plugin can add that to other browsers as well. Starting
with the same textarea, we apply the resizable plugin, customizing the handle option
to display only one handle on the bottom right:

$("#resizable").resizable({
 handles: "se"
});

11.9 Growing an Input with Its Content | 259

http://jquery-cookbook.com/go/plugin-elastic
http://jquery-cookbook.com/go/widget-resizable

With that and the jQuery UI base theme included, the handle gets displayed below the
textarea. To move it into the bottom-right corner of the textarea, we have to add
some CSS:

.ui-resizable-handle {
 bottom: 17px;
}

11.10 Choosing a Date
Problem
Date inputs are necessary for searching for events, flights, or hotels, or entering a birth
date in a registration form. A common solution is to use three selects, for the day,
month, and year components. While that works OK for a date of birth, it can get very
cumbersome when searching for a flight in a certain time period.

Solution
The jQuery UI datepicker can solve the problem by offering a calendar together with
a lot of customization options to optimize for various applications.

The default datepicker works by simply applying it to an input:

<label for="startAt">Start at:</label>
<input type="text" name="startAt" id="startAt" />

$("#startAt").datepicker();

This will bind the events necessary to show the datepicker when the input gets focused,
starting with the current date. Next and previous buttons can be used to select the next
or previous month, and a calendar can be used to select a day.

To make the datepicker more useful, we need to adapt it to the application where it’s
used. For the flight-search example, we can assume that the user looks for a flight
sometime in the next three months, and therefore it displays three months at once,
starting with the next week from the current date:

<label for="from">From</label>
<input type="text" id="from" name="from"/>
<label for="to">to</label>
<input type="text" id="to" name="to"/>

We start with two inputs, each associated with an appropriate label, and then apply
the datepicker to both:

var dates = $('#from, #to').datepicker({
 defaultDate: "+1w",
 changeMonth: true,
 numberOfMonths: 3,
 onSelect: function(selectedDate) {
 var option = this.id == "from" ? "minDate" : "maxDate";

260 | Chapter 11: HTML Form Enhancements with Plugins

http://jquery-cookbook.com/go/widget-datepicker

 dates.not(this).datepicker("option", option, new Date(selectedDate));
 }
});

The default date for the datepicker is the current date plus one week, specified using
the defaultDate option. A select for changing the months is displayed as well, via
changeMonth: true. The option numberOfMonths: 3 indicates that three calendars should
be displayed at once.

The onSelect option is an event triggered whenever the user selects a date. When the
from date is selected, the minDate option for the to date is set to the from date, and
when the to date is selected, the maxDate option for the from date is set.

With that in place, the user can start selecting any of the two dates, and when he
continues to select the other, the input is restricted to a positive range already.

Discussion
By default, the datepicker is shown when the input field receives focus. Using the
showOn option, we can configure the calendar to appear only when clicking a calendar
icon next to the input:

$("#datepicker").datepicker({
 showOn: 'button',
 buttonImage: 'images/calendar.gif',
 buttonImageOnly: true
});

The buttonImage option specifies the path to an image to use as the button, where
buttonImageOnly specifies to use only that image, instead of a button element with an
embedded image.

The showOn option also supports both as a value, displaying the datepicker on focus of
the input and on clicks on the button.

Localization

The jQuery UI datepicker supports 41 locales, provided as ui.datepicker-xx.js files,
where xx is the locale. Each file adds a property to $.datepicker.regional. The ui.date
picker-ar.js file adds these:

$.datepicker.regional['ar'] = {
 closeText: 'إغالق',
 prevText: '<السابق',
 nextText: 'التايل>',
 currentText: 'اليوم',
 dayNames: [' اخلم', 'األربعاء', 'الثالثاء', 'االثنني', 'األحد', 'السبت

اجلمعة', 'يس '],
 dayNamesShort: [' خم', 'أربعاء', 'ثالثاء', 'اثنني', 'أحد', 'سبت

مجعة', 'يس '],
 dayNamesMin: [' خم', 'أربعاء', 'ثالثاء', 'اثنني', 'أحد', 'سبت

مجعة', 'يس '],
 dateFormat: 'dd/mm/yy',

11.10 Choosing a Date | 261

 firstDay: 0,
 isRTL: true
};

To initialize a datepicker with the Arabic locale, we refer to that property:

$("#datepicker").datepicker($.datepicker.regional.ar);

To mix in other options as well, we use $.extend:

$("#datepicker").datepicker($.extend({}, $.datepicker.regional.ar, {
 changeMonth: true,
 changeYear: true
});

We create an empty object literal via {} and then use $.extend to copy the regional
options as well as values for changeMonth and changeYear into the empty object, which
is then used to initialize the datepicker.

262 | Chapter 11: HTML Form Enhancements with Plugins

CHAPTER 12

jQuery Plugins

Mike Hostetler

12.0 Introduction
A primary goal of the jQuery JavaScript library is to remain a fast and concise alternative
to other JavaScript libraries that are available in the open source world. A key principle
toward this goal is ensuring that the jQuery core addresses the needs of most developers,
while remaining fast and concise. Developers may have needs that aren’t completely
satisfied by the jQuery core. Or, a developer may write an extension to core jQuery
functionality that may be useful to a significant segment of jQuery users but shouldn’t
be included in the jQuery core.

jQuery was designed to be extensible in a variety of ways. The recipes in this chapter
are intended to introduce the reader to the world of jQuery plugins.

12.1 Where Do You Find jQuery Plugins?
Problem
You’re trying to build something with jQuery that requires functionality that doesn’t
exist in the jQuery core. The problem is one that other developers have likely run into
before, and you think a plugin may exist. Where should you start looking to find plu-
gins, and how should you evaluate the plugins that you find?

Solution
Search through the following repositories for jQuery plugins:

jQuery Plugin Repository
http://plugins.jquery.com

Google Code
http://code.google.com

263

http://plugins.jquery.com
http://code.google.com

GitHub
http://github.com

Google with special queries
http://google.com

SourceForge
http://sourceforge.net

Discussion
There are a few places around the Web that jQuery plugins may be found. Because of
the nature of jQuery plugins, there are certain open source hosting sites that tend to
attract jQuery plugins more than others. Additionally, the jQuery project hosts a central
repository for jQuery plugins at http://plugins.jquery.com.

It’s best to look through all of the available resources and collect several potential
plugins, if they are available, for your review. Plugins that are built to solve the same
problem often take very different approaches or were built for alternate versions of the
jQuery core library.

When looking for a jQuery plugin, the following are the best steps to find the most
updated and recent versions of plugins.

Search through the jQuery Plugin Repository

The jQuery Project hosts a plugin repository that currently boasts more than 1,200
plugins at the time of this writing. Most authors who host their own plugins will post
their plugins here.

Plugins hosted in the jQuery Plugin Repository are organized into a number of cate-
gories, which can assist with narrowing your search. Plugins may be organized into
multiple categories. Plugins are also required to be listed by API compatibility, ensuring
that any plugins you find are likely to work with a particular version of the jQuery core
library. Lastly, you may also browse plugins by release date, allowing you to keep up
with your favorite plugins as new versions are released.

Search through Google Code

Google Code hosting offers a very rich repository of jQuery plugins. More often than
not, if you can’t find a plugin hosted on the main Plugin Repository, there’s a good
chance it could be on Google Code.

Search through GitHub

GitHub is a rising star in the code hosting world that many jQuery plugin authors are
turning toward. More and more plugins end up here, and it is certainly a site that
warrants a search when looking for a specific plugin. One of the most compelling fea-
tures of GitHub is the ability to “fork” a repository in a friendly way by utilizing the

264 | Chapter 12: jQuery Plugins

http://github.com
http://google.com
http://sourceforge.net
http://plugins.jquery.com
http://plugins.jquery.com
http://code.google.com/
http://github.com

features of the Git source code management system. In the event that you need to
modify an existing plugin, utilizing the features of GitHub are a compelling way to keep
track with upstream updates.

The best way to find a plugin on GitHub is to utilize GitHub’s excellent search. GitHub
supports a number of advanced operators when searching. All of these options may be
viewed in greater detail at http://github.com/search. When looking specifically for a
jQuery plugin, searching for repositories using JavaScript will return the best results.

Perform a Google search

While the previous suggestions are known sources of plugins, searching throughout
the entire Web via Google is useful as well. Because the body of search material tends
to be larger, so does the number of potential results to sift through. Using a few of the
suggested searches can result in finding plugins quicker:

{searchterm} "jquery*.js" - Best practice plugin naming is jquery-{myplugin}.js or
jquery.{myplugin}.js

 {searchterm} "*jquery.js" - Alternate best practice plugin naming

Search through SourceForge

There tends to be very few actual jQuery plugins hosted on SourceForge. However, a
number of projects on this site offer jQuery support tools, such as IDE code completion
extensions. If you’re out of options, or are looking for something unique, SourceForge
is a good place to do a quick search.

12.2 When Should You Write a jQuery Plugin?
Problem
After searching for an existing jQuery plugin to fit your needs, the plugins that were
found either don’t meet your needs or are not constructed in a way that you can take
advantage of them properly. Is it worth writing a new jQuery plugin that can be shared
with others who have the same need?

Solution
There’s no cut and dried solution to this problem. The number of available jQuery
plugins is large, but there are valid cases where plugins don’t exist to meet a
particular need.

In my opinion, the decision to write and publish your own jQuery plugin comes down
to three things:

• Is it likely there are others who have the same problem?

12.2 When Should You Write a jQuery Plugin? | 265

http://github.com/search
http://sourceforge.net

• What level of support are you willing to provide?

• What level of community participation do you desire?

Discussion

Build a plugin if there is a potential audience

If you’re facing a problem that remains unsolved, there are likely other developers who
have encountered the same issue. How others before you have solved the issue is the
key question. It’s assumed that you’ve done some homework at this point, searching
for a solution. During that search, clues that may surface that point toward a need for
a plugin can be found in forum posts or mailing list questions that have gone unan-
swered. There’s no easy way to decide whether a plugin is worth building, and the
decision ultimately comes down to the person who is planning to build the plugin.
However, a general feel of whether there is a potential audience is worth exploring.

The other potential reason to build and publish your own plugin is if a plugin exists to
meet your needs but does not fully do what you want. If this is the case, it is worth
considering the potential for writing a patch and submitting that patch back to the
original author for inclusion in the plugin. Participating in the open source process by
submitting a patch to an existing project tends to be a much more efficient application
of a developer’s most precious resource: time.

Know and communicate the level of support you are willing to provide

If writing your own plugin is the best option, a bit of forethought and planning will
help make sure the process of hanging out your own open source shingle goes well.

Whenever you decide to publish your code, the first and biggest consideration is li-
censing. The jQuery core project is dual-licensed as MIT and GPL, but many other
open source licenses are worthy of consideration. A more thorough discussion on the
intricacies of open source licensing can be found at Wikipedia.

Second, it is important to consider and communicate the level of support that you, the
plugin author, are willing to provide to others who may download and use your code.
Choosing to simply publish your code and provide no support is a completely valid
option and is much better than keeping your code to yourself for fear of the potential
support issues. The key is communication; writing a quick note about your support
plan into the comments of your plugin will go a long way.

If you are willing to provide deeper support for a plugin that you want to publish, there
are several great source code hosting sites that offer several features to assist in sup-
porting your plugin. See Recipe 12.1 for a list of the best places to host and support
your plugin.

266 | Chapter 12: jQuery Plugins

http://en.wikipedia.org/wiki/Open_source_license

Plan for participation from others

Lastly, think through and gauge your willingness to accept participation from others.
Participation is a key component of the open source ecosystem, and it is wise to com-
municate your intention from the moment you publish your plugin. The attraction of
allowing participation is that you can benefit from the work of others. Plugins that
accept participation from others tend to attract additional users, partly because of
the appearance of activity and partly because active code tends to be more
trustworthy code.

Communicating the path to participation is key. Whether you intend to or not, any
piece of code that is published tends to attract some sort of participation once users
find it. Having a plan to engage that participation in an open and public way is essential.

One last word of advice: engaging participation simply by publishing your email ad-
dress and allowing people to email you with comments and questions is generally a bad
idea for a couple reasons. First, email isn’t a public forum that displays activity to
potential users, and second, it introduces you, the plugin author, as a bottleneck to
integrating that activity back into the plugin.

12.3 Writing Your First jQuery Plugin
Problem
You’ve decided that you want to write a jQuery plugin. How do you write a plugin in
jQuery? What best practices should you follow?

Solution
jQuery is designed to make writing a plugin very simple and straightforward. You can
extend the existing jQuery object by writing either methods or functions. Simply de-
claring the following JavaScript after inclusion of the jQuery core library will allow your
code to use your new custom method or function.

Writing a custom jQuery method

jQuery methods are available to be chained and thus can take advantage of jQuery
selectors. jQuery methods are defined by extending the jQuery.fn object with your
method name. Because the jQuery object must be able to handle multiple results, you
must wrap your custom functionality inside a call to the each() function to apply your
code to all of the results:

jQuery.fn.goShop = function() {
 return this.each(function() {
 jQuery('body').append('<div>Purchase: ' + this.innerHTML + '</div>');
 });
};

12.3 Writing Your First jQuery Plugin | 267

Accessing this new plugin is as simple as calling jQuery like you normally would and
utilizing your new method name:

jQuery('p').goShop();

Writing a custom jQuery function

Functions are attached to the main jQuery object. Functions are designed to be called
outside of a jQuery selection:

jQuery.checkout = function() {
 jQuery('body').append('<h1>Checkout Successful</h1>');
};

This new function can be manipulated and called normally:

jQuery.checkout();

Discussion
Attaching new methods and functions to the main jQuery object are a powerful feature
of jQuery. Many of the core methods are built into the library using this same technique.
By leveraging this existing foundation in jQuery, users of jQuery and users of your
plugin have a fast and concise way to add new functionality, extend existing function-
ality, and mold the jQuery code into whatever form suits them best. This flexibility is
a key feature and enables jQuery and its plugins to be used by a wider audience.

The choice to extend jQuery via a new method or a function mainly depends on the
needs of the developer. In general, focusing on extending jQuery via adding a new
method is best because this allows that new method to be chained along with other
methods, and it allows the code in the method to take advantage of jQuery’s selector
engine.

12.4 Passing Options into Your Plugin
Problem
Your first plugin adds a method to jQuery. However, there are a few options that would
be helpful to others if they were exposed properly. What is the best method of passing
options into a custom method?

Solution
Options are best passed into your custom plugin method via an options object. Using
a single options object to pass in parameters promotes cleaner code, is easier to work
with, and provides flexibility down the road.

When allowing options to be utilized in your plugin, it’s wise to provide sensible de-
faults. After providing sensible default options, it’s also important that your plugin

268 | Chapter 12: jQuery Plugins

provide a method for the user of the plugin to override the defaults. Both of these goals
are easily accomplished by declaring a default options object, overriding the default
options with user-supplied options and the jQuery extend() method, and then utilizing
the options in your code:

jQuery.fn.pulse = function(options) {
 // Merge passed options with defaults
 var opts = jQuery.extend({}, jQuery.fn.pulse.defaults, options);

 return this.each(function() {
 // Pulse!
 for(var i = 0;i<opts.pulses;i++) {
 jQuery(this).fadeTo(opts.speed,opts.fadeLow).fadeTo(opts.speed,opts.fadeHigh);
 }

 // Reset to normal
 jQuery(this).fadeTo(opts.speed,1);
 });
};

// Pulse plugin default options
jQuery.fn.pulse.defaults = {
 speed: "slow",
 pulses: 2,
 fadeLow: 0.2,
 fadeHigh: 1
};

By specifying option defaults, developers using your plugin have the ability to provide
as many or as few options when they call your function. It is important to place your
options’ defaults after you’ve defined your plugin entry method; otherwise, you will
encounter an error:

// Override only one option
jQuery('p').pulse({pulses: 6});

// Override all options
jQuery('p').pulse({speed: "fast", pulses: 10, fadeLow: 0.3, fadeHigh: 0.8});

Lastly, by specifying your options as an object attached as a child to your plugin func-
tion, the default options may be overridden only once in a project. A developer then
has the ability to specify their own set of default options, minimizing the amount of
code required to produce the desired behavior:

// Plugin code included above

// Reset pulse default options
jQuery.fn.pulse.defaults = {
 speed: "fast",
 pulses: 4,
 fadeLow: 0.2,
 fadeHigh: 1
};

12.4 Passing Options into Your Plugin | 269

// This call will use the new defaults
jQuery('p').pulse();

Discussion
Supporting options in your plugin is a powerful way to add tremendous flexibility to
the plugin. Plugins that support a rich set of options are more likely to fit the needs of
a wider audience, perform a wider variety of tasks, and generally gain more popularity
than plugins that don’t support options.

Including a set of default options with your plugin is another way to give developers
who use your plugin flexibility and choice in how the plugin is implemented. A handy
side benefit is that the plugin can always rely on certain options being defined, reducing
the amount of code required to check whether an option has been passed. This leaves
plugin users with the ability to override a single option, multiple options, or even all of
the options every time they call your plugin. Lastly, by attaching the default options to
the jQuery object, the options can be overridden globally, giving your users another
tool to leverage in new and creative ways.

12.5 Using the $ Shortcut in Your Plugin
Problem
Other JavaScript libraries make use of the $ shortcut. jQuery itself uses $ only as a
shortcut, with the main object being named jQuery. How can you ensure that your
plugin maintains compatibility with other plugins and libraries?

Solution
jQuery itself uses the $ function as a custom alias for the jQuery object. When jQuery
is set into compatibility mode, it passes back control of the $ alias to the original library
that defined it. Plugins can be crafted to use the same technique.

By wrapping your plugin in an anonymous function and immediately executing that
function, the $ shortcut is kept inside the plugin. Code outside of the plugin can use
$ normally. Inside the plugin, $ will reference the jQuery object as normal:

;(function($) {
 $.fn.pulse = function(options) {
 // Merge passed options with defaults
 var opts = $.extend({}, $.fn.pulse.defaults, options);

 return this.each(function() {
 // Pulse!
 for(var i = 0;i<opts.pulses;i++) {
 $(this).fadeTo(opts.speed,opts.fadeLow).fadeTo(opts.speed,opts.fadeHigh);
 }

 // Reset to normal

270 | Chapter 12: jQuery Plugins

 $(this).fadeTo(opts.speed,1);
 });
 };

 // Pulse plugin default options
 $.fn.pulse.defaults = {
 speed: "slow",
 pulses: 2,
 fadeLow: 0.2,
 fadeHigh: 1
 };
})(jQuery);

Discussion
Wrapping your distributed code in an anonymous function is a very straightforward
and simple step that adds several features and ensures that your plugin code can play
nicer in the wider world that your users may live within.

Adding a semicolon at the beginning of your function definition helps protect against
another developer who may have forgotten to include an ending semicolon in their
library. The JavaScript language breaks statements on newline by default, but many
users take advantage of minimization tools that compress the entire set of JavaScript
in their projects into a single file. This process removes the line endings and can cause
errors if your code follows immediately after. Adding the initial semicolon is a quick
and easy trick to protect against that possibility.

The open parenthesis immediately begins the anonymous function definition. Within
our anonymous function, we define a function that passes the variable that we want to
use in place of the fully named jQuery object. In this case, we want to take advantage
of using $ as the variable. Defining an additional function is required because of the
way the JavaScript language handles scoping. In more traditional languages such as
Java and C++, scope is limited to the block statement. In JavaScript, scope is wrapped
in functions. Therefore, the reason for using a function here is really to set up a scope
boundary that we can define our plugin within.

What follows is a new version of our plugin, with the sole change of swapping out the
way we utilize the jQuery object. Because we’ve wrapped this plugin anonymously and
limited the scope of the $ variable, we can now use $ freely without conflict from any
other code.

The last line wraps up the scoping function and anonymous function with a close
bracket and close parenthesis, respectively. The last bit is what actually calls our anon-
ymous function immediately after it has been defined. This is where we tell our function
to pass in the jQuery object, which is what gets renamed to $ within our function.
Lastly, we close off our new statement with a semicolon to protect against JavaScript
minimization and compression errors.

12.5 Using the $ Shortcut in Your Plugin | 271

The $ shortcut can be incredibly useful in writing JavaScript code. It cuts down on code
size, promotes good code design, and has become extremely popular and well known.
Thus, many libraries take advantage of the $ shortcut, tying it into their own context.
With each library supporting their own version of the $ shortcut, conflicts can easily
arise. By wrapping your plugin code within an anonymous function, you can ensure
that your plugin maintains a level of scope around usage of the $ shortcut that will
reduce the potential for conflicts with other JavaScript libraries.

One additional side effect of wrapping your plugin in an anonymous function, as
described earlier, is that a closure is created. Utilizing a closure in JavaScript aids in
properly namespacing any methods or variables that you may need to define, further
reducing the chance for variable names or function names to conflict with other code.

12.6 Including Private Functions in Your Plugin
Problem
Your plugin code is growing and needs to be organized. How can you implement a
private method that’s unavailable to code outside your plugin?

Solution
By utilizing the plugin design pattern started in Recipe 12.4, private functions may be
defined normally within the anonymous function that we’ve wrapped our plugin in.
Because the function is enclosed in an anonymous function, outside code won’t see our
private method. Code outside will only be able to see functions or methods that are
attached to the jQuery object.

;(function($) {

 $.fn.pulse = function(options) {

 // Merge passed options with defaults
 var opts = $.extend({}, $.fn.pulse.defaults, options);

 return this.each(function() {
 doPulse($(this),opts);
 });
 };

 function doPulse($obj,opts) {
 for(var i = 0;i<opts.pulses;i++) {
 $obj.fadeTo(opts.speed,opts.fadeLow).fadeTo(opts.speed,opts.fadeHigh);
 }

 // Reset to normal
 $obj.fadeTo(opts.speed,1);
 }

272 | Chapter 12: jQuery Plugins

 // Pulse plugin default options
 $.fn.pulse.defaults = {
 speed: "slow",
 pulses: 2,
 fadeLow: 0.2,
 fadeHigh: 1
 };

})(jQuery);

Discussion
Because we now have our plugin wrapped in an anonymous function, defining private
functions within our plugin is as simple as adding a new function as you normally
would.

Grouping and organizing your plugin with public and private methods offers many
advantages to your users and to the plugin author. As your plugin matures and you
receive feedback from the community, you can leverage the use of public and private
methods to provide a consistent API between plugin versions. The consistency of your
API can be a major factor in your plugin’s success.

The ability to break code down into private and public messages also has significant
advantages in code organization as your plugin grows. Well-organized code is easier to
read, to maintain, and to test. Well-tested, clean code can lead to less error-prone code.

12.7 Supporting the Metadata Plugin
Problem
Several plugins utilize the metadata plugin to pass custom options into their methods.
How can integration with the metadata plugin be constructed?

Solution
Leveraging the metadata plugin is as simple as checking whether the plugin is available
and then extending your plugin options with the metadata parameters. Using this
technique, you can supply default options when making the call to your plugin and
override those default options for each object to be operated on through the metadata
written into the markup:

<!-- Include the metadata plugin -->
<script type="text/javascript" src="metadata/jquery.metadata.js"></script>

<!-- Example of markup containing metadata -->
<p class="{pulses: 8, speed: 'slow'}">Starship Enterprise</p>
<p>Battlestar Galactica</p>
<p class="{speed: 100}">Serenity</p>

;(function($) {

12.7 Supporting the Metadata Plugin | 273

 $.fn.pulse = function(options) {
 // Merge passed options with defaults
 var opts = $.extend({}, $.fn.pulse.defaults, options);

 return this.each(function() {

 // Merge in the metadata elements for this specific node
 var o = $.metadata ? $.extend({}, opts, $.metadata.get(this)) : opts;

 doPulse($(this),o);
 });
 };

 function doPulse($obj,opts) {
 for(var i = 0;i<opts.pulses;i++) {
 $obj.fadeTo(opts.speed,opts.fadeLow).fadeTo(opts.speed,opts.fadeHigh);
 }

 // Reset to normal
 $obj.fadeTo(opts.speed,1);
 }

 // Pulse plugin default options
 $.fn.pulse.defaults = {
 speed: "slow",
 pulses: 2,
 fadeLow: 0.2,
 fadeHigh: 1
 };
})(jQuery);

Discussion
Including the metadata plugin is a great example of how jQuery plugins can build off
of one another. The jQuery plugin ecosystem is vast, and chances are there are other
plugins that you can utilize.

To include and use the metadata plugin, you first must actually include it into your
script. The metadata plugin is hosted along with jQuery at Google Code. The metadata
plugin works by allowing you to embed additional data into your HTML, while still
producing valid HTML. We take advantage of this by allowing users to embed element-
specific options into the class element of the items we can operate on.

The options are embedded into the HTML using standard JSON. All of the options
may be embedded, or none may be embedded; it’s up to your users. There are several
other methods and options for using the metadata plugin that are described on its
documentation page.

Within our plugin, we first check to see whether a user has included the metadata
plugin. This is done to ensure that we keep this additional feature optional and to
provide backward compatibility, if necessary. Because the metadata plugin operates on
a single element, we split up how we handle options. The first step is to use the options

274 | Chapter 12: jQuery Plugins

http://docs.jquery.com/Plugins/Metadata

provided when the plugin was called. These options are extended with our default
options, creating our starting point for this first instantiation of our plugin. The second
step is to extend those locally default options with the metadata that may be defined
for each element. All that is required is for us to extend our locally default options with
the metadata options, if the metadata plugin exists.

The metadata plugin provides another option for users of your plugin to pass in options.
Providing options to potential users is a great way to show that you are committed to
your plugin, being a good citizen of the jQuery ecosystem. The metadata plugin is also
a great way to offer your users the ability to write less code by embedding custom
options into the HTML elements.

12.8 Adding a Static Function to Your Plugin
Problem
In addition to making your plugin available through the jQuery function, you want to
expose a static function. How can you add a static function to your jQuery plugin?

Solution
Adding a static method to your plugin requires extending the jQuery object in much
the same way you would add a method. The difference is simply that functions are
called without using jQuery selectors:

;(function($) {
 $.fn.pulse = function(options) {
 // Merge passed options with defaults
 var opts = $.extend({}, $.fn.pulse.defaults, options);

 return this.each(function() {

 // Merge in the metadata elements for this specific node
 var o = $.metadata ? $.extend({}, opts, $.metadata.get(this)) : opts;

 doPulse($(this),o);
 });
 };

 function doPulse($obj,opts) {
 for(var i = 0;i<opts.pulses;i++) {
 $obj.fadeTo(opts.speed,opts.fadeLow).fadeTo(opts.speed,opts.fadeHigh);
 }

 // Reset to normal
 $obj.fadeTo(opts.speed,1);
 }

 // Define our base to add to
 $.pulse = {};

12.8 Adding a Static Function to Your Plugin | 275

 // Static Function
 $.pulse.impulse = function($obj) {
 var opts = {
 speed: 2500,
 pulses: 10,
 fadeLow: 0.2,
 fadeHigh: 0.8
 };
 doPulse($obj,opts);
 }

 // Static Function
 $.pulse.warpspeed = function($obj) {
 var opts = {
 speed: 25,
 pulses: 100,
 fadeLow: 0.2,
 fadeHigh: 0.8
 };
 doPulse($obj,opts);
 }

 // Pulse plugin default options
 $.fn.pulse.defaults = {
 speed: "slow",
 pulses: 2,
 fadeLow: 0.2,
 fadeHigh: 1
 };
})(jQuery);

Calling the static methods available in your plugin is very straightforward, requiring
only that you explicitly pass a valid object to operate on:

// Call the impulse method on the first element returned
jQuery.pulse.impulse(jQuery('p:first'));

// Call the warpspeed method on the first element returned
jQuery.pulse.impulse(jQuery('p:first'));

Discussion
Adding a static function within the scope of your plugin only requires adding a way for
code outside of your plugin to call it. This is accomplished by attaching the functions
to the jQuery object.

In the previous example, we’ve added a namespace object to aid in organizing our code
better. If all that your plugin required was a single static function, it would be com-
pletely appropriate to expose your static function without adding a namespacing ob-
ject. After adding our namespace object, we simply define our functions like normal
and attach them to the namespace object we created. Doing this exposes our function

276 | Chapter 12: jQuery Plugins

to the global namespace, while allowing the contents of the functions to access private
functions and variables.

Taking advantage of the static function is as simple as calling it using the jQuery object
we attached it to. This function is called without utilizing jQuery selectors, so in order
to operate on a DOM element, that element must be explicitly passed to the function.

A static function attached to the jQuery object is another example of the flexibility of
the jQuery library. Your entire plugin could be made up of adding static functions that
simply extend the jQuery core in interesting new ways. A static function could be the
entry point you provide to your plugin, or it could be a simple shortcut method you’ve
found useful that’s packaged in your plugin in a way that makes it easier to share with
other developers. Whatever the need, static functions can be a useful and powerful tool
when building your own jQuery plugin.

12.9 Unit Testing Your Plugin with QUnit
Problem
You want to raise the quality and reliability of your jQuery plugin by creating unit tests
for it. How do you write and ship tests with your jQuery plugin?

Solution
The easiest method to write unit tests for a jQuery plugin is to utilize QUnit, the same
unit testing framework that the jQuery project uses. With QUnit, you can write your
tests right in JavaScript and ship them with your plugin for your users to run in their
own browsers:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <script type="text/javascript" src="../jquery-1.3.2.min.js"></script>
 <script type="text/javascript" src="metadata/jquery.metadata.js"></script>
 <script type="text/javascript" src="jquery.pulse.js"></script>

 <link rel="stylesheet"
href="http://jqueryjs.googlecode.com/svn/trunk/qunit/testsuite.css" type="text/css"
media="screen" />
 <script type="text/javascript"
src="http://jqueryjs.googlecode.com/svn/trunk/qunit/testrunner.js"></script>
</head>
<body>

 <script type="text/javascript">
 module("Testing the jQuery Pulse Plugin");
 test("Test Pulse with basic options", function() {
 $("div.starship").pulse();

12.9 Unit Testing Your Plugin with QUnit | 277

 equals($("#enterprise").css("opacity"),1,"The element should be visible");
 equals($("#galactica").css("opacity"),1,"The element should be visible");
 });

 test("Test Impulse", function() {
 $.pulse.impulse($("#galactica"));

 equals($("#galactica").css("opacity"),1,"The element should be visible");
 });

 test("Test Warp Speed", function() {
 $.pulse.warpspeed($("#enterprise"));

 equals($("#enterprise").css("opacity"),1,"The element should be visible");
 });
 </script>

 <div id="main">
 <div class="starship" id="enterprise">USS Enterprise - NC-1701-A</div>
 <div class="starship" id="galactica">Battlestar Galactica</div>
 </div>

</body>
</html>

Discussion
Learning how to effectively test code is beyond the scope of this chapter. The tests
written in the previous example are intended to simply show an example of what can
be done with unit testing. Chapter 18 goes into great detail about unit testing and
specifically the QUnit framework. For a discussion on how to use QUnit, what types
of things you can test, and how to effectively test your code, please refer to that chapter.

Shipping unit tests with your plugin is another great way to show developers you are
committed to the success and stability of the code that you publish. This builds trust
with your user base and shows that your plugin is a good member of the jQuery plugin
ecosystem. Tests also make it easy for users of your plugins to find bugs that can creep
up in another runtime environment, such as a different browser. This allows you, the
plugin author, to better address the bug that was found by having a working test bed,
allowing you, the plugin developer, to directly address the bug that was found.

278 | Chapter 12: jQuery Plugins

CHAPTER 13

Interface Components from Scratch

Nathan Smith

13.0 Introduction
While the official jQuery UI widget collection offers a wealth of ready-made function-
ality, from time to time you might choose to create a customized element that meets a
specific need. Perhaps you desire greater control over the HTML markup or simply
want to keep your JavaScript code base lighter. Maybe you are looking to build some-
thing not already covered by existing solutions. Whatever the reason, this chapter will
show you how to tersely write customized components for your projects. These recipes
have been written with ease of use in mind, favoring simplicity over configuration.

Recipe 13.1 will show you how to create custom tool tips, for occasions where you need
to direct the user’s attention via providing additional content or instruction. Rec-
ipe 13.2 will explain how to build a file tree–style menu, allowing the user to drill down
and explore the depth of a site hierarchy. In Recipe 13.3 you will learn how to create a
vertically folding accordion. Recipe 13.4 will explain how to use interpage links and
their respective targets to create document tabs. Recipe 13.5 shows how to create a
basic modal window via appropriate action. Recipe 13.6 explains how to build a simple
drop-down menu. Recipe 13.7 delves into the creation of an image rotator that can be
controlled via buttons, reusing the interpage link technique from Recipe 13.4. Rec-
ipe 13.8 takes lessons learned from Recipe 13.3, creating horizontal panels instead of
a vertical accordion.

The following paradigms are used throughout this chapter and will not
be called out specifically for each example.

Each recipe begins by checking whether the necessary element actually exists in the
document. If not, then we exit the function. There is no need to go any further if that
criterion is not met, and this keeps code from executing unnecessarily:

279

// Does element exist?
if (!$('#foobar').length) {

 // If not, exit.
 return;
}

A snippet of generic code is used throughout to cancel the following links that only
serve to trigger JavaScript events. The blur() method is applied to get rid of dotted
borders that would otherwise be permanent (until the user clicked something new),
and return false tells the browser not to follow the link’s href:

// Nofollow.
this.blur();
return false;

To actually kick off the dynamic functionality, each recipe ends with a call to jQuery’s
document.ready() function, ensuring that the DOM has finished loading (but not nec-
essarily all image assets) before attempting to apply event listeners and so forth:

// Kick things off.
$(document).ready(function() {
 init_foobar();
});

Some of the recipes have the following bit of code in the <head> of the HTML document.
For the most part, document.write() is considered an antiquated practice in JavaScript,
because it forces the browser to pause, rendering the page when it encounters such a
command. However, when prehiding content with CSS that will later be shown via
JavaScript, this is exactly the outcome we want:

<script type="text/javascript">
/* <![CDATA[*/
document.write('<link rel="stylesheet" type="text/css" href="preload.css" />');
/*]]> */
</script>

Essentially, before the page even begins to render, a CSS file is written to the <head>
that prehides all the content that will later be shown as the user interacts with the page.
The reason we write the CSS reference with JavaScript is that with JavaScript off, all
the content is visible and fully accessible. For more on that technique, read Peter-Paul
Koch’s “Three JavaScript articles and one best practice”.

13.1 Creating Custom Tool Tips
Problem
From time to time, a graphical element or interface aspect may need further clarifica-
tion, but because of restraints on space (or for the sake of aesthetics), a designer might
not want to take up precious screen real estate by adding explanatory text. In such a
case, there is a need to provide a bit of guidance to the user, who would need it initially

280 | Chapter 13: Interface Components from Scratch

http://www.quirksmode.org/blog/archives/2005/06/three_javascrip_1.html#link4

but whose need would diminish as familiarity with the interface grew. In such cases, a
tool tip makes for an ideal solution. However, HTML leaves us with scarce resources
to create a tool tip, and often the title="..." attribute does not cut it.

Tool tips can be a good solution for user interface clarification, especially if tied to some
sort of dismissible user preference (i.e., “Don’t show me this again”). However, dy-
namic tool tips have often been abused, most notably on blogs, where every single
element on a page with a title="..." attribute causes a tool tip to appear when the
mouse passes over it. Such cases should be avoided, because if everything is treated as
a special case via a tool tip, then the importance is diminished, and in reality nothing
on the page is emphasized. It is the equivalent of shouting every single word in a
sentence. Just as with any web project, the context of the content should dictate the
approach, not vice versa.

Solution
To solve this problem, we can use jQuery to get the mouse position within our area of
interest on the page and then dynamically place a <div> element offset from the point
of origin, which could contain instructions, additional information (in the case of
e-commerce), or just about anything the developer needs to appear. This would be
done by creating a dynamically generated <div> before the close of the </body> tag,
allowing it to have a higher z-index than the rest of the page, which would look like
Figure 13-1. Additionally, just to be sure the tool tip takes precedence, it is explicitly
given an extremely high z-index of 9999.

Figure 13-1. A tool tip generated with jQuery

Tool tip—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Creating Custom Tooltips</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="tooltip.css" />
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="tooltip.js"></script>
</head>

13.1 Creating Custom Tool Tips | 281

<body>
<div id="container">
 <p>
 <span class="tooltip" title="This is my title. There are many like it, but
 this one is mine. You will see it as you hover your mouse over me.">
 Mouse over me to read my title in a tooltip!

 </p>
 <p>
 <span class="tooltip" title="This is more content that will appear in a
 tooltip. Don't be alarmed, because this is only a test of a tooltip.">
 Guess what? I have a tooltip too. Please read it.

 </p>
</div>
</body>
</html>

Tool tip—jQuery code
// Initialize.
function init_tooltip() {

 // Does element exist?
 if (!$('.tooltip').length) {

 // If not, exit.
 return;
 }

 // Insert tool tip (hidden).
 $('body').append('<div id="tooltip_outer"><div id="tooltip_inner"></div></div>');

 // Empty variables.
 var $tt_title, $tt_alt;

 var $tt = $('#tooltip_outer');
 var $tt_i = $('#tooltip_inner');

 // Watch for hover.
 $('.tooltip').hover(function() {

 // Store title, empty it.
 if ($(this).attr('title')) {
 $tt_title = $(this).attr('title');
 $(this).attr('title', '');
 }

 // Store alt, empty it.
 if ($(this).attr('alt')) {
 $tt_alt = $(this).attr('alt');
 $(this).attr('alt', '');
 }

 // Insert text.

282 | Chapter 13: Interface Components from Scratch

 $tt_i.html($tt_title);

 // Show tool tip.
 $tt.show();
 },
 function() {

 // Hide tool tip.
 $tt.hide();

 // Empty text.
 $tt_i.html('');

 // Fix title.
 if ($tt_title) {
 $(this).attr('title', $tt_title);
 }

 // Fix alt.
 if ($tt_alt) {
 $(this).attr('alt', $tt_alt);
 }

 // Watch for movement.
 }).mousemove(function(ev) {

 // Event coordinates.
 var $ev_x = ev.pageX;
 var $ev_y = ev.pageY;

 // Tool tip coordinates.
 var $tt_x = $tt.outerWidth();
 var $tt_y = $tt.outerHeight();

 // Body coordinates.
 var $bd_x = $('body').outerWidth();
 var $bd_y = $('body').outerHeight();

 // Move tool tip.
 $tt.css({
 'top': $ev_y + $tt_y > $bd_y ? $ev_y − $tt_y : $ev_y,
 'left': $ev_x + $tt_x + 20 > $bd_x ? $ev_x − $tt_x − 10 : $ev_x + 15
 });
 });
}

// Kick things off.
$(document).ready(function() {
 init_tooltip();
});

13.1 Creating Custom Tool Tips | 283

Discussion
It is worth mentioning that $('.tooltip') is not the most performant way to retrieve
elements. For the sake of this demo, all tags on the page are being parsed, which is the
equivalent of document.getElementsByTagName('*'). Depending on the size of the docu-
ment, and depending on the browser, this can be quite slow. So, when actually em-
ploying this code, be sure to specify which tags you are looking for. For example, you
would use $('a.tooltip, span.tooltip') instead of just $('.tooltip'). While more
modern browsers will map such class selectors to getElementsByClassName or
querySelectorAll (if available), older browsers have to first iterate through tag names
and then determine whether the relevant class is present.

Assuming that one or more elements exist that match class="tooltip", we append the
dynamic markup at the end of the page, right before the close of the body. It does not
yet appear anywhere visibly, because in the CSS file we have applied display: none to
the #tooltip_outer ID.

Next, we create empty variables called $tt_title and $tt_alt. These will be used to
temporarily store the title and alt (if it exists) attributes of our matched class="tool
tip" elements. The astute reader might wonder, “Aren’t we just interested in the
title attribute? Why worry about alt?” Good question. We store the alt attribute in
addition to the title, just in case class="tooltip" is used on an image. Internet Ex-
plorer causes its own tool tip to appear showing the alt contents, and we don’t
want that.

The rest of the code deals with class="tooltip" elements. When one such element is
hovered over with the mouse, we store the contents of the title and (possibly) alt
attributes and then zero them out by setting each one equal to an empty text string.
This way, there is no browser default tool tip interfering with our custom one. The
contents of the title attribute are copied to #tooltip_inner, and then the
#tooltip_outer is shown.

Likewise, when the mouse leaves the target element, we want to undo what happened
when it was it first entered. The #tooltip is hidden, the #tooltip_inner content is set
to an empty string, and the title and alt attributes are restored to their original values.

Lastly, the .mousemove() method monitors mouse movement once it has entered the
boundaries of a class="tooltip" element. The tool tip is offset relative to the mouse
position, appearing to the right side of the cursor; that is, unless the tool tip is danger-
ously close to extending beyond the width of the browser. In such a case, a horizontal
scroll bar would appear, and we do not want that. To solve this snafu, we have a bit of
logic that flips the tool tip to the left side of the cursor. The same is true vertically. If
the tool tip is too far at the bottom of a page, it will flip itself to be above the mouse
cursor.

284 | Chapter 13: Interface Components from Scratch

13.2 Navigating with a File-Tree Expander
Problem
On content-heavy sites with multiple tiers of information architecture, occasionally a
need arises to present several levels of nested data. If all of the info was presented in its
entirety, it would be too unwieldy to be useful and would take up too much vertical
space on a page. Enter the file-tree paradigm. This functionality, seen most notably in
the desktop UI of Windows Explorer (not to be confused with Internet Explorer), al-
lows a user to expand and compact layers of directories.

Solution
By using jQuery’s descendant selectors on nested unordered lists, we can hide/show
additional portions of a tree structure, as needed. This is done by adding
class="tree" to the top-level unordered list and using a combination of CSS and Java-
Script to unveil its sublevels, producing a tree like that in Figure 13-2. Additionally, we
make use of event delegation to support numerous tiers without the overhead of at-
taching event listeners to multiple elements. Instead, the event is captured at the top
level of the <ul class="tree"> via jQuery’s .live() method.

Figure 13-2. Presenting multiple levels of data through a file tree

File tree—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">

13.2 Navigating with a File-Tree Expander | 285

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Navigating a File Tree Expander</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="tree.css" />
<script type="text/javascript">
/* <![CDATA[*/
document.write('<link rel="stylesheet" type="text/css" href="preload.css" />');
/*]]> */
</script>
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="tree.js"></script>
</head>
<body>
<div id="container">
 <p class="tree_controls">
 Expand all ~
 Collapse all
 </p>
 <ul class="tree">

 Primary
 <ul class="tree_expanded">

 Secondary
 <ul class="tree_expanded">

 Tertiary

 Quaternary

 Quaternary

 Quaternary

 Quaternary

 Quaternary

 ...

 ...

 ...

 ...

 ...

286 | Chapter 13: Interface Components from Scratch

 ...

</div>
...
</body>
</html>

File tree—jQuery code
// Initialize.
function init_tree() {

 // Does element exist?
 if (!$('ul.tree').length) {

 // If not, exit.
 return;
 }

 // Expand and collapse.
 $('p.tree_controls a.expand_all, p.tree_controls a.collapse_all').click(function() {

 // Look at the class.
 if ($(this).hasClass('expand_all')) {
 $(this).parent('p').next('ul').find('a.tree_trigger')
 .addClass('trigger_expanded')
 .end().find('ul').addClass('tree_expanded');
 return false;
 } else {
 $(this).parent('p').next('ul').find('a.tree_trigger')
 .removeClass('trigger_expanded')
 .end().find('ul').removeClass('tree_expanded');
 }

 // Nofollow.
 this.blur();
 return false;
 });

 // Listen for tree clicks.
 $('ul.tree a.tree_trigger').live('click', function() {

 // Is the next hidden?
 if ($(this).next('ul').is(':hidden')) {
 $(this).addClass('trigger_expanded').next('ul')
 .addClass('tree_expanded');
 } else {
 $(this).removeClass('trigger_expanded').next('ul')
 .removeClass('tree_expanded');
 }

 // Nofollow.
 this.blur();
 return false;

13.2 Navigating with a File-Tree Expander | 287

 });

 // Add class for last .
 $('ul.tree li:last-child').addClass('last');

 // Change state of trigger.
 $('ul.tree_expanded').prev('a').addClass('trigger_expanded');
}

// Kick things off.
$(document).ready(function() {
 init_tree();
});

Discussion
The tree code begins by attaching event handlers to links with class names of
expand_all and collapse_all. If either link is clicked, then we traverse the DOM up-
ward to the parent <p>, over to the next , and then down into its children. Each
child link with class="tree_trigger" receives the class of trigger_expanded, and each
subsequent receives the class tree_expanded. These class names correspond to the
CSS rules that change their visual appearance. In the case of the trigger links, they have
an expanded icon. As for the lists, they are now display: block instead of
display: none.

The “live” event listener listens for clicks anywhere within the tree. Basically, this listens
for clicks anywhere within the <ul class="tree"> and then determines whether the
click happened on a link with class="trigger". If so, it executes the associated code.
The benefit of using .live(), as opposed to adding a click handler directly to each link,
is that the code is associated with all existing and future elements that match the criteria.
The benefit of this is twofold: you don’t waste time attaching event listeners to nu-
merous elements, and if dynamic content is inserted via Ajax, it is affected by the “live”
event listener as well.

Next, we add a style hook of class="last" via JavaScript to each that is the :last-
child of its parent. This allows us to position a background image that simulates con-
nectivity throughout the tree, via a light gray line. Finally, if any child has been
hard-coded to be visible when the page loads via class="tree_expanded", we traverse
the DOM and add class="tree_trigger_expanded" to the nearest trigger link.

13.3 Expanding an Accordion
Problem
The situation in which one might use an accordion could be somewhat akin to when
a file tree might be useful. The paradigms are similar in that each one allows for addi-
tional information to be initially obscured from view and then revealed as the user

288 | Chapter 13: Interface Components from Scratch

interacts further. They differ, however, in that an accordion is not meant to contain an
entire taxonomy of data but rather is used more as a novelty to draw attention to several
facets of a site or product. One such accordion example can be seen at http://www.apple
.com/iphone. This allows for panels of info to be expanded at the user’s leisure, without
completely dominating the vertical space allotted to the sidebar. It conserves space not
unlike high-density shelving or movable bookcases in a library, allowing one aisle to
serve several racks of storage versus having an ever-present aisle between each one.

It is worth noting that there is a jQuery UI accordion widget that is highly customizable
and can be given a theme/skin to match the rest of the UI widgets. You can see it in
action at http://jqueryui.com/demos/accordion. The benefit of using the official widget
is that it is officially supported by the jQuery UI community and will continue to evolve
and become more robust. The potential drawback is the amount of extra code required,
if all you need is a simple accordion. On the flip side, the reason one might choose to
build a custom accordion component is for a smaller code footprint. This comes at the
disadvantages of having the animation not be pixel-perfect and having to set the height
in pixels of each accordion panel. It is advised that you consider both options and do
what best fits the project at hand.

Solution
Using jQuery’s excellent DOM traversal capabilities, namely, adjacent sibling selectors,
it is possible to write a script generically enough to handle multiple accordion elements.
Additionally, this script is able to handle more elements being added to the accordion,
if need be. Figure 13-3 shows an accordion that hasn’t yet expanded, while Fig-
ure 13-4 shows its contents, revealed by expanding it.

Figure 13-3. Accordion, waiting for the user to expand

13.3 Expanding an Accordion | 289

http://www.apple.com/iphone
http://www.apple.com/iphone
http://jqueryui.com/demos/accordion

Figure 13-4. The expanded accordion

Accordion—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Expanding an Accordion</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="accordion.css" />
<script type="text/javascript">
/* <![CDATA[*/
document.write('<link rel="stylesheet" type="text/css" href="preload.css" />');
/*]]> */
</script>
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="accordion.js"></script>
</head>
<body>
<div id="container">
 <dl class="accordion">
 <dt>
 Title goes here
 </dt>
 <dd>
 <p>
 Lorem ipsum...
 </p>
 </dd>
 <dt>

290 | Chapter 13: Interface Components from Scratch

 Title goes here
 </dt>
 <dd>
 <p>
 Lorem ipsum...
 </p>
 </dd>
 <dt>
 Title goes here
 </dt>
 <dd>
 <p>
 Lorem ipsum...
 </p>
 </dd>
 </dl>
 ...
</div>
</body>
</html>

Accordion—jQuery code
// Initialize.
function init_accordion() {

 // Does element exist?
 if (!$('dl.accordion').length) {

 // If not, exit.
 return;
 }

 // Gather all accordions.
 $('dl.accordion').each(function() {

 // Reveal first accordion item.
 $(this).find('dt:first a').addClass('accordion_expanded')
 .end().find('dd:first').show();

 // Added to round corners via CSS.
 $(this).find('dt:last').addClass('last');
 });

 // Event listener for click.
 $('dl.accordion dt a').click(function() {

 // Get parent <dl>.
 var $dl = $(this).parents('dl:first');

 // Get the next <dd>.
 var $dd = $(this).parent('dt').next('dd');

 // Class final <dt>.
 function findLast() {

13.3 Expanding an Accordion | 291

 if ($dl.find('dd:last').is(':hidden')) {
 $dl.find('dt:last').addClass('last');
 }
 }

 // Is it visible?
 if ($dd.is(':hidden')) {

 // Expand the <dd>, hide others.
 $dd.slideDown('fast').siblings('dd:visible').slideUp('fast', findLast);

 // Change arrow state, remove class="last" from <dt>.
 $(this).addClass('accordion_expanded').parent('dt')
 .removeClass('last').siblings('dt').find('a')
 .removeClass('accordion_expanded');
 }

 // Nofollow.
 this.blur();
 return false;
 });
}

// Kick things off.
$(document).ready(function() {
 init_accordion();
});

Discussion
This function begins by finding all definition lists with the class of accordion and ap-
plying jQuery’s .each() method to them. Inside each one, the first <dt> link is given
the class accordion_expanded, and the first <dd> is shown (the rest remain hidden be-
cause of CSS display: none). Additionally, the last <dt> is given class="last", allowing
us to style it uniquely with rounded corners for those browsers that support it. This
differs from the file-tree example, in which we patched browsers that lacked :last-
child. In the case of the accordion, class="last" will be removed and reapplied based
on user interaction.

The second part of the code handles the crux of the accordion. All links that reside
inside the accordion’s <dt> are given a click event listener. When any of these links is
clicked, we traverse the DOM upward to the parent <dt> and then over to the next
<dd>. If that <dd> is hidden, then we animate it into place via jQuery’s .slideDown()
method, while simultaneously calling .slideUp() on all the other sibling <dd>. When
this is completed, the callback function findLast is executed, which determines wheth-
er to assign class="last" to the last visible <dt>, depending on whether its accompa-
nying <dd> is hidden.

If that last <dd> is visible, then no action is taken, because the <dd> itself is being rounded
via CSS, targeted via :last-child. Again, the astute reader may wonder, “Why are we
not patching Internet Explorer 6 and 7, since they don’t understand :last-child?” The

292 | Chapter 13: Interface Components from Scratch

reason is, while IE 6 and 7 don’t support :last-child, neither do they support rounded
corners via CSS, so in this case there is nothing to be gained.

Finally, the class of accordion_expanded is added to the <dt> link that was clicked, and
that class is removed from all other <dt> links. This causes the arrows in each <dt> to
all point to the right, indicating that they are collapsed, with the exception of the most
recently clicked <dt> link.

13.4 Tabbing Through a Document
Problem
You might have a page that has quite a bit of data that all belongs together because of
site architecture, as opposed to separating it into distinct pages. In such a case, instead
of simply having a lengthy document with headings and paragraphs, a tabbed interface
often makes better sense. In this case, the tabs work as one might expect a desktop
application to function. Instead of leaving the page that you are on, the relevant infor-
mation associated with each tab is brought to the forefront, as shown in Figure 13-5.
One such example of this type of functionality is the Yahoo! home page.

Solution
By grabbing the href="..." of an interpage anchor link, we can use jQuery to then find
the ID of the target, hide its siblings, and bring the target element into the foreground.
This is by far one of the simpler applications of jQuery yet can be used to great effect.

Figure 13-5. Using tabs to help users navigate information

Tabs—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
<head>

13.4 Tabbing Through a Document | 293

<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Tabbing Through a Document</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="tabs.css" />
<script type="text/javascript">
/* <![CDATA[*/
document.write('<link rel="stylesheet" type="text/css" href="preload.css" />');
/*]]> */
</script>
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="tabs.js"></script>
</head>
<body>
<div id="container">
 <ul class="tabs">

 Tab Link 01

 Tab Link 02

 Tab Link 03

 Tab Link 04

 Tab Link 05

 <div class="tab_content_wrap">
 <div id="tab_content_primary_01" class="tab_content">
 <p>
 Content Area 01
 </p>
 <p>
 Lorem ipsum...
 </p>
 </div>
 <div id="tab_content_primary_02" class="tab_content">
 <p>
 Content Area 02
 </p>
 <p>
 Duis ultricies ante...
 </p>
 </div>
 <div id="tab_content_primary_03" class="tab_content">
 <p>
 Content Area 03
 </p>
 <p>
 Morbi fringilla...

294 | Chapter 13: Interface Components from Scratch

 </p>
 </div>
 <div id="tab_content_primary_04" class="tab_content">
 <p>
 Content Area 04
 </p>
 <p>
 Sed tempor...
 </p>
 </div>
 <div id="tab_content_primary_05" class="tab_content">
 <p>
 Content Area 05
 </p>
 <p>
 Nulla facilisi...
 </p>
 </div>
 </div>
 ...
</div>
</body>
</html>

Tabs—jQuery code
// Initialize.
function init_tabs() {

 // Does element exist?
 if (!$('ul.tabs').length) {

 // If not, exit.
 return;
 }

 // Reveal initial content area(s).
 $('div.tab_content_wrap').each(function() {
 $(this).find('div.tab_content:first').show();
 });

 // Listen for click on tabs.
 $('ul.tabs a').click(function() {

 // If not current tab.
 if (!$(this).hasClass('current')) {

 // Change the current indicator.
 $(this).addClass('current').parent('li').siblings('li')
 .find('a.current').removeClass('current');

 // Show target, hide others.
 $($(this).attr('href')).show().siblings('div.tab_content').hide();
 }

13.4 Tabbing Through a Document | 295

 // Nofollow.
 this.blur();
 return false;
 });
}

// Kick things off.
$(document).ready(function() {
 init_tabs();
});

Discussion
When the function runs initially, the first tabbed content area is revealed, while the rest
remain hidden because of the display: none style rule in our preload.css file.

Beyond that, all we have to do is listen for any link within <ul class="tabs"> to be
clicked. If it doesn’t already have class="current", then we know its content is ob-
scured, so we add class="current" to the clicked link and remove it from any sibling
tabs that might have it. Next, we grab the href="..." or the clicked link, which points
to an ID in the same page, and we reveal that element via jQuery’s .show() method,
while simultaneously hiding any sibling tabbed content areas that might be visible.

Note that if you want enhanced functionality, such as firing custom events when tab
states change or loading remote content via Ajax, be sure to check out the official jQuery
UI Tab widget.

13.5 Displaying a Simple Modal Window
Problem
With the prevalence of pop-up blocking features being included in most browsers, gone
are the days of being able to reliably use window.open() to create a dialog box. Instead,
a much more popular and usable solution is to create a modal overlay within the current
page, which will take visual precedence until the user interacts with or dismisses it.

It is worth noting that there is a jQuery UI dialog widget that is highly customizable
and can be given a theme/skin to match the rest of the UI widgets. You can see it in
action at http://jqueryui.com/demos/dialog.The benefit of using the official widget is that
it is officially supported by the jQuery UI community and will continue to evolve and
become more robust. The potential drawback is the amount of extra code required, if
all you need is a simple modal. On the flip side, the reason one might choose to build
a custom modal component is for a smaller code footprint. It is advised that you con-
sider both options and do what best fits the project at hand.

296 | Chapter 13: Interface Components from Scratch

http://jqueryui.com/demos/dialog

If you want an even more robust solution, one particularly geared to-
ward showing a wide variety of content and particularly well suited to
image galleries, look no further than ThickBox. It is a popular jQuery
add-on written by Cody Lindley (one of the coauthors of this book).
You can see it in action at http://jquery.com/demo/thickbox/.

Solution

Using jQuery, we can easily find the width and height of the browser viewport and
create a dimmed layer to sit atop the entire site design. Using CSS positioning, we can
then place our modal “window” (which in fact is simply a <div> layer) front and center
to draw the user’s attention to it, as shown in Figure 13-6. Various types of content can
be displayed, including images, Ajax-loaded HTML fragments, and in-page markup.

Figure 13-6. A modal window, created with jQuery

Modal—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
<head>

13.5 Displaying a Simple Modal Window | 297

http://jquery.com/demo/thickbox/

<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Displaying a Simple Modal Window</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="modal.css" />
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="modal.js"></script>
</head>
<body>
<div id="container">
 In-page
 | Remote markup
 | Remote text
 | Image
file.

 <select><option>-- SHOULD BE OVERLAPPED IN IE6 --</option></select>

 <div id="modal_anchor">
 <p>
 This content will be copied into the modal window, if its #anchor is targeted.
 </p>
 </div>
 Lots of line breaks, to simulate scrolling content...

 It's the end of the world, as we know it, and I feel fine.
</div>
</body>
</html>

Modal—jQuery code
// Initialize.
function init_modal() {

 // Does element exist?
 if (!$('a.modal').length) {

 // If not, exit.
 return;
 }

 // Detect IE6 (boolean).
 var $IE6 = typeof document.addEventListener !== 'function' && !window.XMLHttpRequest;

 // Do some math.
 function sizeModal() {

 // Modal dimensions.
 var $modal = $('#modal_window');
 var $modal_width = $modal.outerWidth();
 var $modal_height = $modal.outerHeight();
 var $modal_top = '-' + Math.floor($modal_height / 2) + 'px';

298 | Chapter 13: Interface Components from Scratch

 var $modal_left = '-' + Math.floor($modal_width / 2) + 'px';

 // Set modal.
 $('#modal_window').css('margin-top', $modal_top)
 .css('margin-left', $modal_left);
 }

 /* For IE6. */
 function positionModal() {
 // Force modal into place.
 $('#modal_wrapper').css('top', $(document).scrollTop() + 'px');
 }

 // Reveal the modal.
 function showModal() {
 if ($IE6) {
 positionModal();
 }

 // Unveil the wrapper.
 $('#modal_wrapper').show();

 // Size it.
 sizeModal();

 // Reveal modal window.
 $('#modal_window').css('visibility', 'visible').show();

 // Resize as images load.
 $('#modal_content img').each(function() {
 $(this).load(function() {
 $(this).removeClass('modal_placeholder').show();
 sizeModal();
 });
 });
 }

 // Insert modal at end of </body>.
 $('body').append('
 <div id="modal_wrapper">
 <!--[if IE 6]>
 <iframe id="modal_iframe"></iframe>
 <![endif]-->
 <div id="modal_overlay"></div>
 <div id="modal_window">
 <div id="modal_bar">
 Modal window
 Close
 </div>
 <div id="modal_content"></div>
 </div>
 ');

 // Look for modal links.
 $('a.modal').click(function() {

13.5 Displaying a Simple Modal Window | 299

 // Check the href="..."
 var $the_link = $(this).attr('href');

 // Determine link target.
 if ($the_link.match(/^#./)) {

 // Assume #anchor content.
 $('#modal_content').html($($(this).attr('href')).html());
 showModal();

 } else if ($the_link.match(/.jpg$/) ||
 $the_link.match(/.png$/) ||
 $the_link.match(/.gif$/)) {

 // Assume image content.
 $('#modal_content').html('
 <p id="modal_image_wrapper">

 </p>
 ');
 showModal();

 } else {

 // Assume external Ajax content.
 $('#modal_content').load($(this).attr('href')
 .replace('#', ' #'), '', showModal);
 }

 // Determine modal title.
 if ($(this).attr('title')) {

 // Insert title.
 $('#modal_bar strong').html($(this).attr('title'));

 } else if ($(this).html() !== '') {

 // Insert link text.
 $('#modal_bar strong').html($(this).html());
 }

 // Nofollow.
 this.blur();
 return false;
 });

 // Hide modal elements.
 $('#modal_overlay, #modal_close').click(function() {

 // Hide the modal.
 $('#modal_wrapper').hide();

 // Hide, because images might load later.
 $('#modal_window').css('visibility', 'hidden');

300 | Chapter 13: Interface Components from Scratch

 // Unbind image listeners.
 $('#modal_content img').each(function() {
 $(this).unbind();
 });

 // Destroy modal content.
 $('#modal_content').html('');

 // Reset modal title.
 $('#modal_bar strong').html('Modal window');

 // Nofollow.
 this.blur();
 return false;
 });

 // Listen for browser scroll, if IE6.
 if ($IE6) {
 $(window).scroll(function() {
 if ($('#modal_wrapper').is(':visible')) {
 positionModal();
 }
 });
 }
}

// Kick things off.
$(document).ready(function() {
 init_modal();
});

Discussion
Our modal solution begins by defining a variable that acts as a Boolean value, repre-
senting whether the browser is Internet Explorer 6. To determine this, we perform two
quick evaluations. Once we know if we are faced with IE 6, we can use that knowledge
to patch functionality. You will also notice that there is a conditional comment included
in the markup fragment that we dynamically create:

<!--[if IE 6]><iframe id="modal_iframe"></iframe><![endif]-->

At first glance, this might be confusing because if the browser is Internet Explorer 6,
an empty iframe is inserted that does not reference any included page content. The
reason we do this is to trick IE 6 into allowing our modal to overlap any <select> form
elements that might be in the page. If we do not use this workaround, then all
<select> elements on the page will essentially “poke through” the modal overlay, mak-
ing for a quite disorienting user experience.

Next, we create a function to house all the calculations that need to be performed in
order to center the modal window inside the viewport. While we could have done this
all in CSS and simply hard-coded the width and height, this allows for greater flexibility.

13.5 Displaying a Simple Modal Window | 301

The developer implementing this JavaScript need only set the width of the modal in
CSS, and our function takes care of the rest, even allowing for content of varying height.

The next function exists for, and is only ever called by, Internet Explorer 6. This patches
IE 6’s lack of CSS support for position: fixed. For all other browsers, our modal will
remain centered vertically and horizontally as the user scrolls a long document. In IE
6, however, we need to specifically tell the modal to adjust its position as the user scrolls.
We will do so by calling this function later in the file.

Actually revealing the modal window is simple enough. We have bundled all the nec-
essary code for that into showModal(). It contains a call to positionModal() if the browser
is IE 6. It shows the modal wrapper <div> and calls sizeModal() to center the modal
and size it according to its content’s height. Once sized correctly, the modal window
itself is shown. An onload function is also attached to any dynamically inserted images.
This is to account for browsers not knowing the dimensions of an image until it is fully
cached. Note that showModal() isn’t actually called until later in the file.

When the document loads, we attach the modal markup right before the close of the
</body>.

Click listeners are attached to all links with class="modal". When a modal link is
clicked, there is a series of evaluations done in order to determine what type of content
is to be loaded. First if the link begins with a hash (#) and is followed by one or more
characters, we know that there is in-page content being linked to. In such cases, the
HTML content is copied from that ID into the modal. The second case involves images.
If the href ends in .jpg, .png, or .gif, then an tag is created, and the href is copied
into the src. Thirdly, if none of the previous criteria is met, we are most likely dealing
with an external page. In this case, jQuery’s .load() method is called, retrieving the
HTML from that page (and from a specific ID if a hash exists) and inserting it into the
modal.

The next chunk of code adds click event listeners to the modal overlay (the gray back-
ground) and the close button. If either of these is clicked, the modal will be hidden, all
modal images will be stripped of their event listeners, the modal content will be set to
an empty string, and the text in the modal window’s title bar will be reset.

Last is an event listener specifically for IE 6 that watches for the window to scroll. If
the modal window wrapper is visible (and implicitly everything else associated with
the modal window), then positionModal() is called continuously as the user scrolls the
page. This ensures that the modal window stays in place via mimicking position:
fixed.

302 | Chapter 13: Interface Components from Scratch

13.6 Building Drop-Down Menus
Problem
Inevitably, there will be a client or boss who wants everything “one click away” in a
site navigation structure. While this is not an altogether ignoble aspiration, placing
links to every single section of a site on a single page could add significant clutter to a
page. Enter the drop-down menu.

Solution
In desktop programs and operating systems, these menus are often activated by clicking
a term, after which you see a variety of subterms and categories. On the Web, however,
the paradigm seems to be that drop-down menus appear when the user hovers over a
top-level link, as shown in Figures 13-7 and 13-8. By using a combination of
CSS :hover rules and positioning techniques, most of the heavy lifting can be done
without much JavaScript at all. jQuery can simply offer minor enhancements for IE 6.

A mild warning for developers: take into account the accessibility implications of users
who do not have the manual dexterity to use a mouse. It’s like the old adage: “If all you
have is a hammer, everything looks like a nail.” Before resorting to drop-downs as an
easy off-the-shelf solution, check that the information architecture of the project has
been well thought through. Be sure that a drop-down paradigm is the best choice. For
example, Microsoft Word, long known for its ridiculous levels of drop-downs and
toggleable options (most of which the average user never touched), was redesigned in
Office 2007 with a tabbed UI dubbed the “ribbon.” Suddenly, once obscure options
are being used regularly, because of a better executed interface.

Figure 13-7. Drop-down menu ready for use

Figure 13-8. Drop-down menu in action

13.6 Building Drop-Down Menus | 303

Drop-down—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang="en-us">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Building Drop-Down Menus</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="dropdown.css" />
<!--[if IE 6]>
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="dropdown.js"></script>
<![endif]-->
</head>
<body>
<div id="container">
 <ul class="dropdown">
 <li class="dropdown_trigger">
 Nav Item

 Subitem

 Subitem

 Subitem

 Subitem

 Subitem

 ...

 <p>
 This text is just here to show that the menu overlaps the content below it.
 </p>
 ...
</div>
</body>
</html>

Drop-down—jQuery code
// Initialize.
function init_dropdown() {

 // Does element exist?

304 | Chapter 13: Interface Components from Scratch

 if (!$('ul.dropdown').length) {

 // If not, exit.
 return;
 }

 // Add listener for hover.
 $('ul.dropdown li.dropdown_trigger').hover(function() {

 // Show subsequent .
 $(this).find('ul').fadeIn(1);
 },
 function() {

 // Hide subsequent .
 $(this).find('ul').hide();
 });
}

// Kick things off.
$(document).ready(function() {
 init_dropdown();
});

Discussion
In this example, jQuery is only employed if the browser is IE 6. You might be wondering,
“Why is fadeIn being called with only a one-millisecond animation?” This fixes a bug
in IE 6, which has trouble rendering vertical CSS borders. Visually, it is the same
as .show() but without any border issues. Aside from that, everything else is pretty
simple. When a list item with class="dropdown_trigger" is hovered over, the subse-
quent is shown. When the mouse leaves that area, the is hidden. That’s all
there is to it! Note that we are conditionally including the jQuery library only for IE 6.
Chances are, if you are reading this book, you will want to use jQuery for more than
just this one particular demo. In that case, move your inclusion of jQuery outside of the
conditional comments.

13.7 Cross-Fading Rotating Images
Problem
On pages that contain a large masthead or “hero” image, often seen on e-commerce
sites, many different products and/or departments are vying for that top spot. Often,
the compromise is to simply have a series of images fade in and out, repeating on a
loop. This is all well and good but can often be frustrating to use, because far too many
sites overlook the need to pause the rotation in order to glean the very information that
is attempting to be conveyed.

13.7 Cross-Fading Rotating Images | 305

The implications of a constant animation should be considered. Most users have
learned to ignore annoying ads that contain a lot of motion. The designer/developer
must take into account those users who might not want to see the animation, while
also trying to read the rest of the page. Worse yet is when a user attempts to read one
of the rotating slides, only to have it continue to animate. Therefore, play/pause
functionality is be included in this recipe, lest our users be caught in an endless, ani-
mated loop.

Solution
Using jQuery’s .fadeIn() and .fadeOut() methods, we can create a nice cross-fade
animation that will iterate through an array, changing each image’s opacity based on
a set timer. By implementing what we learned from the tabbed document portion of
this chapter, we can create links to each image, which not only will cause the target
image to come to the forefront but also sets a flagged variable of pause to either true or
false, which will start or stop the animation. This makes for a truly usable image rotator
versus pure eye candy.

Rotator—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Cross-fading Rotating Images</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="rotator.css" />
<script type="text/javascript">
/* <![CDATA[*/
document.write('<link rel="stylesheet" type="text/css" href="preload.css" />');
/*]]> */
</script>
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="rotator.js"></script>
</head>
<body>
<div id="container">
 <div id="rotator_wrapper">
 <ul id="rotator">
 <li id="photo_1">

 <li id="photo_2">

 <li id="photo_3">

 <li id="photo_4">

306 | Chapter 13: Interface Components from Scratch

 <li id="photo_5">

 <ul id="rotator_controls">

 1

 2

 3

 4

 5

 PAUSE
 </div>
</div>
</body>
</html>

Rotator—jQuery code
// Initialize.
function init_rotator() {

 // Does element exist?
 if (!$('#rotator').length) {

 // If not, exit.
 return;
 }

 // Rotate speed.
 var speed = 2000;

 // Pause setting.
 var pause = false;

 // Rotator function.
 function rotate(element) {

 // Stop, if user has interacted.
 if (pause) {
 return;
 }

13.7 Cross-Fading Rotating Images | 307

 // Either the next /first .
 var $next_li = $(element).next('li').length ?
 $(element).next('li') :
 $('#rotator li:first');

 // Either next / first control link.
 var $next_a = $('#rotator_controls a.current').parent('li').next('li').length ?
 $('#rotator_controls a.current').parent('li').next('li').find('a') :
 $('#rotator_controls a:first');

 // Animate.
 $('#rotator_controls a.current').removeClass('current');
 $next_a.addClass('current');

 // Continue.
 function doIt() {
 rotate($next_li);
 }

 // Fade out .
 $(element).fadeOut(speed);

 // Show next .
 $($next_li).fadeIn(speed, function() {

 // Slight delay.
 setTimeout(doIt, speed);
 });
 }

 // Add click listeners for controls.
 $('#rotator_controls a').click(function() {

 // Change button text.
 $('#rotator_play_pause').html('PLAY');

 // Show target, hide other .
 $($(this).attr('href')).show().siblings('li').hide();

 // Add class="current" and remove from all others.
 $(this).addClass('current').parent('li').siblings('li')
 .find('a').removeClass('current');;

 // Pause animation.
 pause = true;

 // Nofollow.
 this.blur();
 return false;
 });

308 | Chapter 13: Interface Components from Scratch

 // Pause / Play the animation.
 $('#rotator_play_pause').click(function() {

 // What does the button say?
 if ($(this).html() === 'PAUSE') {

 // Stop rotation.
 pause = true;

 // Change the text.
 $(this).html('PLAY');

 } else {

 // Remove class="pause".
 pause = false;

 // Start the rotation.
 rotate('#rotator li:visible:first');

 // Change the text.
 $(this).html('PAUSE');
 }

 // Nofollow.
 this.blur();
 return false;
 });

 // Hide all but first .
 $('#rotator li:first').siblings('li').hide();

 // Wait for page load.
 $(window).load(function() {

 // Begin rotation.
 rotate($('#rotator li:visible:first'));
 });
}

// Kick things off.
$(document).ready(function() {
 init_rotator();
});

Discussion
This recipe starts off by defining two key variables: speed (a numeric value in
milliseconds) and pause (a Boolean to tell the rotator whether to play). Initially, speed
has been set to two seconds, and pause is set to false, allowing the rotator to autoplay
when the page loads.

13.7 Cross-Fading Rotating Images | 309

Inside the rotate() function, a variable has been set called $next_li, which will
correspond either to the next after the one currently being animated or to the first
 in the array (in the case of reaching the end of the array and needing to begin
anew). Likewise, the same premise is being applied to links within <ul id="rotator_con
trols"> in order to add a visual indicator of which image’s button is currently active.
After a slight delay of two seconds, the whole sequence is kicked off again.

If that were where this demo ended, it could get pretty tiresome seeing images rotate
uncontrollably. Luckily, we can reuse the in-page anchor link technique from the
tabbed document recipe. We simply assign click listeners to each of the links in
<ul id="rotator_controls"> and then reveal the target image while hiding the rest. We
also add a play/pause button that will start and/or stop the rotator from animating.

Last is the code that sets everything into motion. All but the first within
<ul id="rotator"> are hidden, and then when the window has finished loading, the
animation begins. Note that $(window).load() differs from $(document).ready() be-
cause the former waits for all assets to load completely, including images, which is
especially important for the case of an image rotator. The latter simply waits for the
HTML structure to be intact, which is important for applying functionality even as the
rest of the images on a page are loading. Both are important, and each one has its place.

13.8 Sliding Panels
Problem
Occasionally, you might need to display a variety of choices horizontally, and do so
with a bit of panache, but might have more choices than the width of a layout will
allow. Or, perhaps the approach simply dictates that there be some fancy user inter-
action. Either way, the sliding panels approach (sometimes called a horizontal accor-
dion) is one possible way to present such information. Figure 13-9 shows a closed panel,
while Figure 13-10 shows a panel that has slid out to become visible.

Solution
In this recipe, we will revisit some of the concepts applied in the accordion demo, but
instead of expanding and collapsing content panels vertically, we will be animating
them horizontally. We will also use a CSS positioning trick to work around the slight
miscalculation of simultaneously animating panels. Rather than worry about synchro-
nization between each panel, animating with pixel-perfect precision at exact fractions
of a second, we simply take the last in the <ul class="panels"> and position it
absolutely to the top right of the . That way, when the sum width of all the panels
occasionally adds up to greater than 100 percent of the as they animate, the last
 never breaks to the next line.

310 | Chapter 13: Interface Components from Scratch

Figure 13-9. Horizontal panel, still closed

Figure 13-10. Horizontal panel, opened

Panels—HTML code
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<title>jQuery Cookbook - Ch.13 - Sliding Panels</title>
<link rel="stylesheet" type="text/css" href="../_common/basic.css" />
<link rel="stylesheet" type="text/css" href="panels.css" />
<script type="text/javascript" src="../_common/jquery.js"></script>
<script type="text/javascript" src="panels.js"></script>
</head>
<body>
<div id="container">
 <ul class="panels">

 1

 2

 3

 4

13.8 Sliding Panels | 311

 5

 <ul class="panels">

 A

 B

 C

 D

 E

</div>
</body>
</html>

Panels—jQuery code
// Initialize.
function init_panels() {

 // Does element exist?
 if (!$('ul.panels').length) {

 // If not, exit.
 return;
 }

 // Animation speed.
 var speed = 200;

 // Add class for last .
 $('ul.panels li:last-child').addClass('last');

 // Begin with mouseover.
 $('ul.panels li').hover(function() {

 // Alter target .
 $(this).stop().animate({
 width: '360px',
 fontSize: '150px'

 // Speed.
 }, speed)

 // Alter sibling .
 .siblings('li').stop().animate({

312 | Chapter 13: Interface Components from Scratch

 width: '135px',
 fontSize: '50px'

 // Speed.
 }, speed);
 },

 // End with mouseout.
 function() {

 // Restore target .
 $(this).stop().animate({
 width: '180px',
 fontSize: '100px'

 // Speed.
 }, speed)

 // Restore sibling .
 .siblings('li').stop().animate({
 width: '180px',
 fontSize: '100px'

 // Speed.
 }, speed);
 });
}

// Kick things off.
$(document).ready(function() {
 init_panels();
});

Discussion
The recipe begins by defining a variable for speed. In this case, it is set to 200
milliseconds. We then add class="last" to each ending . We then attach a hover
event listener (in reality, this maps to both a mouseover and mouseout, but let’s not
get technical). When an is hovered over with the mouse, its width is animated to
40% and font size to 150px, while the other are each animated to 15% wide with a
font size of 50px. Likewise, when the mouse exits the , the widths of all ele-
ments are set to 20%, and their font sizes are set to 100px.

13.8 Sliding Panels | 313

CHAPTER 14

User Interfaces with jQuery UI

Richard D. Worth

14.0 Introduction
A couple years back, there was a set of quite popular jQuery plugins bundled in a
package called Interface, written by Stefan Petre. These offered really great interactions,
such as dragging-and-dropping, selecting, sorting, and resizing, and great widgets such
as a tool tip, an autocomplete, and an accordion. The 1.2 release of jQuery had some
API changes that would’ve required changes to Interface for it to be compatible, but
Interface was never updated.

jQuery UI, started by Paul Bakaus, picked up where Interface left off. jQuery UI is a
suite of plugins with a consistent API and complete documentation that has been tested
in all major browsers. With it, you can create rich web interfaces and rich Internet
applications (RIAs). Oh yeah, and the plugins work well together and are easy to use,
accessible, extensible, and “themeable.”

jQuery UI is a sister project of jQuery. Version 1.0 of jQuery UI was released in Sep-
tember 2007. Version 1.5 was released in June 2008. About halfway through the de-
velopment of 1.6, the team changed directions and ended up releasing 1.7 with some
major changes, most specifically the introduction of the jQuery UI CSS Framework.
jQuery UI 1.6 was released later for legacy compatibility. The latest stable release is
1.7.2 and includes the following interactions, widgets, and effects.

Interactions
• Draggable (drag)

• Droppable (and drop)

• Resizable

• Selectable

• Sortable

315

http://jqueryui.com/
http://jqueryui.com/docs/Theming/API

Widgets
• Accordion

• Datepicker

• Dialog

• Progressbar

• Slider

• Tabs

Effects
• Blind, bounce, clip, drop down/up/left/right, explode, fold, highlight, pulsate,

puff, scale, shake, slide down/up/left/right, transfer

• Color animations

• Class animations (addClass/removeClass/toggleClass with interval)

Basic Usage
This chapter will forgo covering some of the more common ways to use these interac-
tions, widgets, and effects, because they are well covered in demos on the jQuery UI
website. These same demos, with full source code and descriptions, are included in
every download of jQuery UI, along with full documentation.

How This Chapter Is Organized
The first two recipes get you started by helping you to download jQuery UI, or reference
it on a content delivery network (CDN), and include it on your page for use.

The next seven recipes of this chapter cover the jQuery UI API. This API first built on
top of the jQuery plugin pattern but has grown to include what is needed by jQuery
UI widgets, which are a unique style of jQuery plugin. Namely, they’re state and method
calls. So, in addition to specifying options on init, you can modify options after init.
You can also call methods on jQuery UI plugins to change the state and programmat-
ically trigger custom events.

The remainder of the chapter focuses on a project where multiple jQuery UI widgets
are combined to create a single user interface that includes flexible and themeable con-
trols for a music player.

316 | Chapter 14: User Interfaces with jQuery UI

http://jqueryui.com/demos
http://jqueryui.com/demos

14.1 Including the Entire jQuery UI Suite
Problem
You want to include the entire jQuery UI suite. This might be because you don’t know
yet what parts you’ll use and what parts you won’t. Or it might be because you’ll use
enough of the suite that it’s easier or more efficient to include the whole suite, rather
than each individual piece you’ll use.

Solution
Link to a jQuery UI theme, then a compatible version of the jQuery script, and then
the jQuery UI script:

<link rel="stylesheet" type="text/css" href="themename/jquery-ui.css" />
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="jquery-ui.js"></script>

Discussion
This chapter covers the latest stable version of jQuery UI: 1.7.2. It requires at a mini-
mum jQuery 1.3. When you download jQuery UI, included in the ZIP package is the
latest stable version of jQuery that is compatible.

Rather than host your own version of jQuery and jQuery UI, you can use Google’s
AJAX Libraries API. Simply change your script URLs like so:

<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js"></script>
<script type="text/javascript"
 src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js"></script>

Google also hosts the 20 or so themes that are in the jQuery UI ThemeRoller gallery.

<link rel="stylesheet" type="text/css" href="http://ajax.googleapis.com/ajax/libs/
jqueryui/1.7.2/themes/{themename}/jquery-ui.css" />

This includes the 13 images per theme that are referenced by relative URLs in the
theme CSS.

You can replace {themename} with base, black-tie, blitzer, cupertino, dark-hive,
dot-luv, eggplant, excite-bike, flick, hot-sneaks, humanity, le-frog, mint-choc,
overcast, pepper-grinder, redmond, smoothness, south-street, start, sunny, swanky-
purse, trontastic, ui-darkness, ui-lightness, or vader. For a preview of each of these,
see the jQuery UI ThemeRoller gallery.

Theming with jQuery UI is well covered in the next chapter. For our purposes, we’ll
just be sure to include one of these themes, because a theme is required.

14.1 Including the Entire jQuery UI Suite | 317

http://jqueryui.com/themeroller/#themeGallery

14.2 Including an Individual jQuery UI Plugin or Two
Problem
You only want to use one or two jQuery UI widgets. You don’t want to import the
whole library and an entire theme’s CSS. You just want the minimum required to use
the plugins you need.

Solution
So, you only want Sortable and Tabs. You have two options for including individual
jQuery UI components rather than the entire suite:

• Use the jQuery UI Download Builder to create a custom build of jQuery UI con-
taining only those plugins you are interested in. For this example, select Sortable
and Tabs. The Download Builder will automatically select any dependencies, in
this case, UI Core. The ZIP you download includes a single .js file with UI Core,
Sortable, and Tabs:

js/jquery-ui-1.7.2.custom.min.js

Include this file on your page after the jQuery script, which is provided in the same
folder:

<script type="text/javascript" src="js/jquery-1.3.2.min.js"></script>
<script type="text/javascript" src="js/jquery-ui-1.7.2.custom.min.js"></script>

• Download the jQuery UI development bundle, reference the development-bundle
folder in a custom Download Builder ZIP, or use SVN. Each individual plugin file
is in the ui subfolder. Reference each file individually:

<script type="text/javascript" src="jquery-1.3.2.js"></script>
<script type="text/javascript" src="ui/ui.core.js"></script>
<script type="text/javascript" src="ui/ui.sortable.js"></script>
<script type="text/javascript" src="ui/ui.tabs.js"></script>

The CSS for each individual plugin is also available in separate files, if you go with the
second option (development-bundle). You’ll need to include the core CSS, each plugin-
specific CSS, and the theme CSS:

<link rel="stylesheet" type="text/css" href="themes/base/ui.core.css" />
<link rel="stylesheet" type="text/css" href="themes/base/ui.tabs.css" />
<link rel="stylesheet" type="text/css" href="themes/base/ui.theme.css" />

In this case, one of the plugins we’ve selected, Sortable, doesn’t have any plugin-
specific CSS.

Discussion
Whether using JavaScript or CSS, there are trade-offs between using a single large in-
clude and multiple smaller (overall) includes. It’s not always clear-cut, like “Use indi-

318 | Chapter 14: User Interfaces with jQuery UI

http://jqueryui.com/download
http://jqueryui.com/docs/Subversion

vidual plugin files in development. Use one large file in production.” For example, it
may be simpler in development to point to the whole suite, where performance testing
isn’t a big consideration. But then in production you might need to include only the
files for the plugins used on each page to minimize load.

On the other hand, for debugging purposes, it may be beneficial to have a script and
CSS reference to each plugin file during development, and in production you may use
the Google AJAX Libraries API and the visitor’s cache to make up for the file size, even
if the file includes functions that are not ever used. The ideal setup will depend on your
architecture, how many and which of the plugins you use, and the specific needs of
your development and production environments.

14.3 Initializing a jQuery UI Plugin with Default Options
Problem
You want to start using a jQuery UI plugin as quickly and easily as possible, accepting
the built-in default options.

Solution
All jQuery UI plugins are called like traditional jQuery plugins, so after you get a
matched set of elements, simply call the plugin name as a function on the jQuery object:

<script type="text/javascript">
$(function() {
 $('#topnav').tabs();
});
</script>

Discussion
Because JavaScript is case sensitive, care is taken in the naming of jQuery UI plugins.
All jQuery UI plugins start lowercase, and, like the jQuery API, most are only one word.
If more than one word is needed, any after the first will start uppercase. There aren’t
currently any jQuery UI plugins with more than one word, so here’s a made-up
example:

$('p.long').succinct();

$('.short').longerPluginName();

The initialized element gets a class of ui-pluginname. For example, here’s the before
and after HTML if you call $('div').draggable();:

<div>A simple DIV</div>

<div class="ui-draggable">A simple DIV</div>

14.3 Initializing a jQuery UI Plugin with Default Options | 319

There are some exceptions to this. The element on which you call .dialog() gets the
class of ui-dialog-content and is wrapped in a generated element with a class of
ui-dialog. Another exception is if you call .datepicker() on a text input. The input
will not get the ui-datepicker, but the <div> that appears when the input is focused
has the ui-datepicker class.

Here are a few points to keep in mind when initializing a jQuery UI plugin:

• If you call a jQuery UI plugin init method on a set containing more than one
element, it will be called as a separate init on each element individually. So, the
following:

$('img').draggable();

is equivalent to this:

$('img').each(function() {
 $(this).draggable();
});

• Each DOMElement can be initialized by each jQuery UI plugin only once. Any future
init calls, whether with options specified or not, will be ignored. See later in this
chapter for recipes on changing options after init as well as destroying a plugin,
which undoes an init. If you really want to, you can call init again after that.

• All options are optional. You can always safely initialize a jQuery UI plugin by
simply calling the plugin name method. Not only is it safe, but it should be
supremely useful. Each has been designed to have the most common options as
defaults. If they don’t make you happy, see the next two recipes.

14.4 Initializing a jQuery UI Plugin with Custom Options
Problem
You want to use a jQuery UI plugin but with options other than those selected by the
plugin author to be the built-in defaults.

Solution
Specify default option overrides in an options hash as the first argument to the plugin
init method call:

$('#myDiv').dialog({
 height: 100, // overrides default: 'auto'
 width: 350 // overrides default: 300
});

320 | Chapter 14: User Interfaces with jQuery UI

Discussion
Any option values you specify on init will override the default value. All unspecified
options values will maintain the default.

The options hash, whether all defaults or some defaults plus some custom options, is
the basis for the initial state of the plugin. That state is specific to the combination of
that DOMElement with that jQuery UI plugin. For example, you might initialize a single
element with two different jQuery UI plugins that each has a color option:

$('#myDiv').foo({ color: 'black' });
$('#myDiv').bar({ color: 'green' });

Now, #myDiv, what’s your foo color? Black. What’s your bar color? Green. Both are
separate from the CSS color. In some later recipes, we’ll get into how to ask elements
what their plugin values are, as well as how to give them new values.

Also important to note is now that #myDiv is initialized as a foo and a bar, it is no longer
affected by those plugin defaults. The defaults are only used on init as a template for
the plugin’s initial state.

14.5 Creating Your Very Own jQuery UI Plugin Defaults
Problem
Every time you create a jQuery UI dialog, you find yourself specifying the same few
options, among others:

$('#msg').dialog({
 height: 300,
 width: 400,
 draggable: false,
 modal: true,
 buttons: {
 'OK': function(event, ui) {
 $(this).dialog('close');
 }
 }
 ...
});

You long for your code to be as succinct as it once was. What happened to the simple
beauty of $('#msg').dialog();?

Solution
Override the plugin defaults before init by extending $.ui.pluginname.defaults:

$.extend($.ui.dialog.defaults, {
 height: 300,
 width: 400,
 draggable: false,

14.5 Creating Your Very Own jQuery UI Plugin Defaults | 321

 modal: true,
 buttons: {
 'OK': function(event, ui) {
 $(this).dialog('close');
 }
 }
});
...
$('#msg').dialog();
...
$('#note').dialog();

Discussion
If you were only looking to improve the readability a bit, you could simply put the
options in a variable and pass them to the plugin init:

var options = {
 height: 300,
 width: 400,
 draggable: false,
 modal: true,
 buttons: {
 'OK': function(event, ui) {
 $(this).dialog('close');
 }
 }
};

$('#msg').dialog(options);

But this recipe is about more than just readability and code beauty. It’s about changing
the default behavior of a plugin you didn’t write. Plus, it makes it so you can get back
to the simple no-options init:

$('#msg').dialog();

As Dave Methvin famously said, “It couldn’t get any shorter unless it read your mind.”

Of course, you still have the option of overriding even these custom defaults by passing
custom options to the plugin init, as in the previous recipe.

Don’t forget that plugin options are cloned and extended from the defaults at the time
of init. So, extending $.ui.dialog.defaults after a <div> has already been initialized
as a dialog will have no effect on that dialog, even if that init was done with no custom
options. The effect will be on any dialogs initialized after the defaults were overridden.

322 | Chapter 14: User Interfaces with jQuery UI

14.6 Getting and Setting jQuery UI Plugin Options
Problem
You need to check or change the value of a jQuery UI plugin option after it has been
initialized.

Solution 1: Getting the Value
Call the plugin’s option method, passing the name of the option:

var active = $('#myDiv').accordion('option', 'active');

When called with only an option name, the option method gets and returns the value,
so it’s not chainable.

Solution 2: Setting the Value
Call the plugin’s option method, passing the name of the option and the new value:

$('#myDiv').accordion('option', 'active', 3);

When called with an option name and value, the option method sets the value and
returns the jQuery object, so it’s chainable.

Discussion
The option method get/set follows the same pattern as jQuery getters and setters such
as .css() and .attr(). If you provide a value, it’s a setter; if you omit the value, it’s a
getter.

As with other jQuery setters, you can set multiple options at once by passing a hash to
the option method:

$('#myDiv').accordion('option', {
 active: 2,
 collapsible: true
});

14.7 Calling jQuery UI Plugin Methods
Problem
You need to make a jQuery UI plugin do something programmatically.

Solution
Call the jQuery UI plugin name method, and pass the name of the plugin method you
want to call as the first argument. For example, to close a dialog, use this:

14.7 Calling jQuery UI Plugin Methods | 323

$('#msg').dialog('close');

If the method takes arguments, pass them after the name of the method. For example,
to select the third tab, use this:

$('#nav').tabs('select', 2); // tabs method select accepts a 0-based index

Discussion
Every jQuery UI plugin provides at least four common base methods:

• option

• enable

• disable

• destroy

The option method was covered in the previous recipe. The destroy method is covered
in a later recipe. The enable and disable methods are pretty self-explanatory. These
work by setting the disabled option for that plugin, which defaults to false:

$('img').draggable('disable');

$('#mySlider').slider('enable');

Calling these methods also toggles the ui-pluginname-disabled class on the element,
which can be used for styling or selecting.

To see whether a plugin is currently disabled, use the option method to get the value
of the disabled option:

var isDisabled = $('#tempature').slider('option', 'disabled');

14.8 Handling jQuery UI Plugin Events
Problem
You need to react to, or be notified of, an event that occurs on a jQuery UI plugin. This
could be a dialog opening, an accordion panel closing, or a tab being selected.

In this recipe, we’re going to handle a draggable being dropped onto a droppable, which
triggers the drop event on the droppable element.

Solution 1: Pass a Callback Function to the Event Name Option
On init, or later using the option method, you can declare a callback function to be
called when that event occurs:

// Declaring an event callback option on init
$('#shopping-cart').droppable({
 drop: function(event, ui) {
 addProduct(ui.draggable);

324 | Chapter 14: User Interfaces with jQuery UI

 }
});

// Declaring an event callback after init using the option method
$('#shopping-cart').droppable();
...
$('#shopping-cart').droppable('option', 'drop', function(event, ui) {
 addProduct(ui.draggable);
});

Note that this solution allows for only one function to be called at each event trigger.
You can call multiple handling functions by using a proxy method or by using the bind
solution, shown next.

Solution 2: Bind to the Custom Event Using the Event Type
Use the jQuery .bind() method, and bind to the type of the event:

// Declaring an event callback option on init
$('#shopping-cart').bind('drop', function(event, ui) {
 addProduct(ui.draggable);
});

This binding can be done on the plugin element itself, or some container, taking ad-
vantage of custom event bubbling and delegation.

Discussion
Every jQuery UI event receives two arguments, event and ui. The event argument is
similar to the event argument passed to all browser events, such as click and
keypress. The difference is that this is a custom event object. As with browser events,
the type can be found in event.type.

Many jQuery UI plugin events have corresponding browser events that will typically
trigger them. For example, the draggable sequence, dragstart, drag, dragstop, is most
likely triggered by the browser events mousedown, mousemove, and mouseup. If the custom
event was triggered by a browser event, that browser event will be in the
event.originalEvent property. This can be really useful if you need to determine
whether something was done via the keyboard, the mouse, or programmatically. Or it
can be helpful if you need to find out whether a modifier key was held while the mouse
was clicked or moved.

The ui argument is a hash that contains any values that are particularly applicable to
that event at that time, as well as ones that couldn’t be had by calling the option or
some other method on the plugin. For example, when a droppable gets a draggable
dropped on it, that draggable element is passed to the drop event in ui.draggable. The
contents of this ui hash are unique to each plugin event.

Note that the event name is most often different from the event type. For example, both
Draggable and Slider have a start event. This is the event name. The types of the same

14.8 Handling jQuery UI Plugin Events | 325

are dragstart and slidestart. Since each plugin has its own option namespace, each
can have the same option name, simply, start:

$('img').draggable({
 start: function(event, ui) {
 //event.type == 'dragstart'
 }
});
$('#mySlider').slider({
 start: function(event, ui) {
 //event.type == 'slidestart'
 }
});

But since events are bound and triggered in the same namespace, a prefix is required
to make the event types unique:

$('img').bind('dragstart', function(event, ui) {
 //event.type == 'dragstart'
 }
});
$('#mySlider').bind('slidestart', function(event, ui) {
 //event.type == 'slidestart'
 }
});

This prefix is most commonly the name of the plugin, yielding event types such as
dialogfocus, tabsadd, and progressbarchange. In some cases, a custom verb prefix is
used instead, if it’s a better fit. So, you use dragstart instead of draggablestart, and
you use slidestart instead of sliderstart.

If the event type prefix happens to match the event name exactly, it is dropped to avoid
a doubling up like dragdrag or slideslide. In these cases, the event type will match the
event name, like drag and slide.

14.9 Destroying a jQuery UI Plugin
Problem
You’re done with a particular plugin, and you want your element back the way it was.
This is bigger than disable; this is un-init.

Solution
Call the destroy method:

$('#queue').sortable('destroy');

326 | Chapter 14: User Interfaces with jQuery UI

Discussion
Calling the destroy method will completely uninitialize that element as that plugin. It
will remove any classes added by the init or any later method call or event. If the
init caused the element to be wrapped, it will unwrap. It’s like a big undo.

Destroying a jQuery UI plugin doesn’t remove the element from the DOM. It simply
removes that plugin state saved on that element, putting the element back as close as
possible to its pre-init state. After a jQuery UI plugin is destroyed, it can be initialized
as the same again.

If you want to both destroy and remove a plugin element, you can simply
call .remove(). The destroy method will be called automatically by jQuery UI as it’s
removed. This is true even if the element has been initialized as more than one jQuery
UI plugin.

14.10 Creating a jQuery UI Music Player
Problem
You need a music player that supports a common set of interface controls whether the
music is being played by Flash Player or HTML5 audio or some other browser audio
capability. You need the controls to be accessible, flexible, and themeable. A few basic
features will do:

• Play

• Pause

• A track bar to show and control the current point in the playback

• A progress meter to show how much of the song is buffered

• Volume

In addition to these basic features, you want one more feature. This music player needs
to be scalable. The same interface should work at any size, whether resized by the
browser, the user, or the application—all the way up to full screen.

Solution
Let’s build a music player using jQuery UI. We’re going to create the play and pause
buttons using jQuery UI CSS Framework icons, and we’re going to create the track bar
using the jQuery UI Slider plugin. The progress meter will be a jQuery UI Progressbar.
Finally, the volume control will be one more jQuery UI Slider. We’ll wrap these ele-
ments in a common container to provide for some nice widget theming so that not only
will each of our controls be themed but also our music player as a whole will be themed.

14.10 Creating a jQuery UI Music Player | 327

We will not be building this music player as a reusable plugin. We’re
simply going to wire together some jQuery UI widgets to work as some-
thing that will appear to the user as one component. But the music player
itself won’t be a jQuery plugin or a jQuery UI plugin. For this recipe,
it’s just a collection of HTML, JavaScript, and CSS. That way, we can
focus on how to use the jQuery UI plugins underneath, without the
additional complexity of building a new plugin out of existing plugins.

HTML5 audio

To keep things simple, we’re going to use a minimal subset of the HTML5 Media
Element API. This is available in a number of recent browsers, such as Firefox 3.5. We’ll
implement it as a compatibility layer so that another playback mechanism, such as
Flash Player, could be substituted easily. For this recipe, we need the following from
our audio API:

• Start or resume playback (play)

• Pause the playback (pause)

• Get the length of the song (duration)

• Get the current point that the playback is at (timeupdate)

• Change to a certain point in the song (currentTime)

• Get the volume the song is being played at (volumechange)

• Change to a certain volume (volume)

Assuming an HTML5 audio element exists in the document, here’s the compatibility
layer code:

var $audio = $('audio'), audioEl = $audio[0];
var audio = {
 currentTime: 0,
 duration: secondsTotal,
 volume: 0.5,
 set: function(key, value) {
 this[key] = value;
 try { audioEl[key] = value; } catch(e) {}
 if (key == 'currentTime') {
 $audio.trigger('timeupdate');
 }
 if (key == 'volume') {
 $audio.trigger('volumechange');
 }
 },
 play: function() {
 audioEl.play && audioEl.play();
 },
 pause: function() {
 audioEl.pause && audioEl.pause();
 }
};

328 | Chapter 14: User Interfaces with jQuery UI

http://dev.w3.org/html5/spec/Overview.html#htmlmediaelement
http://dev.w3.org/html5/spec/Overview.html#htmlmediaelement
http://dev.w3.org/html5/spec/Overview.html#audio

$audio.bind('timeupdate', function() {
 audio.currentTime = audioEl.currentTime;
});
audio.set('currentTime', 0);
audio.set('volume', 0.5);

The music player

Let’s use the CSS class mplayer for our music player. This will be the class for our main
<div>, and will be used as a prefix in all our CSS rules and jQuery selectors. Here’s the
CSS and HTML for our bare player:

.mplayer { position: relative; width: 40%; height: 2.5em; margin: 50px 0 100px 0; }

<div class="mplayer ui-widget"></div>

I’ve set the width to 40 percent so that we can see we have a flexible player from the
ground up. Just resize your browser and watch the player resize. This will be even easier
to see when the player isn’t empty.

In addition to the mplayer class, our main <div> gets a ui-widget class. This is to ensure
elements within it get styled appropriately. See the next chapter for more on theming
with jQuery UI CSS Framework classes.

An empty <div> and no JavaScript make for an invisible and quiet music player. Let’s
add a play button and get our music on.

Play and pause button

There’s not yet a button plugin in jQuery UI. We can make do in the meantime with
an a element and some semantically named jQuery UI CSS Framework icon classes:

Here’s the CSS:

.mplayer .buttons-container { position: absolute; top: 10px; left: 10px; }

.mplayer .buttons-container .playpause { height: 1.2em; width: 1.2em; display: block;
 position: relative; top: −2px; left: −2px; }
.mplayer .buttons-container .playpause .ui-icon { margin: −1px 0 0 −1px; }
.mplayer .playpause .ui-icon-play, .paused .playpause .ui-icon-pause { display: none; }
.paused .playpause .ui-icon-play { display: block; }

Here’s the HTML:

<div class="mplayer ui-widget">
 <div class="buttons-container">

 </div>
</div>

14.10 Creating a jQuery UI Music Player | 329

With a couple CSS rules, we’re able to have one button serve as both the pause and the
play button. With the previous CSS, only one icon, play or pause, will be visible at
once, depending on whether our div.mplayer has the paused class. But the same HTML
allows for a different designer to decide that both icons will be visible at once, but
perhaps with different colors and opacity, depending on whether the song is playing.

Here’s the JavaScript:

$('.mplayer .playpause').click(function() {
 var player = $(this).parents('.mplayer');
 if (player.is('.paused')) {
 $('.mplayer').removeClass('paused');
 audio.play();
 } else {
 $('.mplayer').addClass('paused');
 audio.pause();
 }
 return false;
})
.hover(function() { $(this).addClass('ui-state-hover'); },
 function() { $(this).removeClass('ui-state-hover'); })
.focus(function() { $(this).addClass('ui-state-focus'); })
.blur(function() { $(this).removeClass('ui-state-focus'); });
$('.mplayer').addClass('paused');

Our button needs JavaScript to do the following:

• Call the audio.play() or audio.pause() function, depending on whether the
paused class is on div.mplayer when clicked.

• Toggle the paused class on the .mplayer.

• React to mouse and keyboard focus, hover, and blur. This is where a button plugin
might come in handy (there’s one being built), but for a simple icon button like
this, it’s not too much code.

Don’t forget the return false; since our button is an <a> with an href of #.

With jQuery, jQuery UI, and the UI Lightness theme loaded, Figure 14-1 shows what
our music player looks like with just the play/pause button.

Figure 14-1. Play and pause button

If you click the play button, it should change to a pause button. If you click again, it
should change back. Also notice that you get a hover effect, as well as a visual cue, when
tabbing in and out of the button with the keyboard. If you’re in a browser that supports
the audio element and it has a src attribute that points to a supported music file, you
should even hear something when you click play.

330 | Chapter 14: User Interfaces with jQuery UI

Current and total time labels

The next step is to add two labels, one that shows the current point we’re at in the song
and another that shows the total time in the song. These are pretty straightforward.

Here’s the CSS:

.mplayer .currenttime { position: absolute; top: 0.6em; left: 2.2em;
 width: 3em; text-align: center; background: none; border: none; }
.mplayer .duration { position: absolute; top: 0.6em; right: 2.2em;
 width: 3em; text-align: center; background: none; border: none; }

Here’s the HTML:

<div class="mplayer ui-widget">
 <div class="buttons-container">

 </div>

</div>

Here’s the JavaScript:

function minAndSec(sec) {
 sec = parseInt(sec);
 return Math.floor(sec / 60) + ":" + (sec % 60 < 10 ? '0' : '') +
Math.floor(sec % 60);
}
$('.mplayer .currenttime').text(minAndSec(audio.currentTime));
$('.mplayer .duration').text(minAndSec(secondsTotal));

$audio
 .bind('timeupdate', function(event) {
 $('.mplayer .currenttime').text(minAndSec(audio.currentTime));
 });

We’ve put the current time on the left and total time on the right, leaving room in the
middle for the track bar (see Figure 14-2). We want the current time to always reflect
where we are in the song, so we bind to audio’s timeupdate notification event. The event
itself doesn’t give us the currentTime. For that, we go to the audio.currentTime property.
We need a small function to format it as minutes:seconds, since times in the audio layer
are in seconds.

Figure 14-2. Current and total time labels

14.10 Creating a jQuery UI Music Player | 331

Slider track for song position

Now we’re getting somewhere. Next is our track bar. It consists of a simple <div>, but
we’re going to give it a track and handle by calling .slider() on it. We’ll use Slider’s
range: 'min' option so that the region between 0:00 and the current time will be
shaded. Oh yeah, and we have to set max to the duration of the song, in seconds. So if
it’s a 3.5-minute song, we’ll set max to 210. No calculations are needed, because
audio.duration already gives us the total number of seconds in the song. The other
defaults for Slider work for us here: max: 0, step: 1.

Here’s the CSS:

.mplayer .track { top: 11px; margin: 0 5.2em; margin-top: −2px;
 border-style: none; }
.mplayer .track .ui-slider-handle { border-left-width: 0; height: 1.1em;
 top: −0.24em; width: 2px; margin-left: −3px; }

Here’s the HTML:

<div class="mplayer ui-widget">
 <div class="buttons-container">

 </div>

 <div class="track"></div>

</div>

Here’s the JavaScript:

$('.mplayer .track')
 .slider({
 range: 'min',
 max: audio.duration,
 slide: function(event, ui) {
 $('.ui-slider-handle', this).css('margin-left',
 (ui.value < 3) ? (1 - ui.value) + 'px' : '');
 if (ui.value >= 0 && ui.value <= audio.duration) {
 audio.set('currentTime', ui.value);
 }
 },
 change: function(event, ui) {
 $('.ui-slider-handle', this).css('margin-left',
 (ui.value < 3) ? (1 - ui.value) + 'px' : '');
 }
 })
 .find('.ui-slider-handle').css('margin-left', '0').end()
 .find('.ui-slider-range').addClass('ui-corner-left').end();

$audio
 .bind('timeupdate', function(event) {
 $('.mplayer .track').each(function() {

332 | Chapter 14: User Interfaces with jQuery UI

 if ($(this).slider('value') != audio.currentTime) {
 $(this).slider('value', audio.currentTime);
 }
 });
 $('.mplayer .currenttime').text(minAndSec(audio.currentTime));
 });

Slider handles are center aligned, meaning at the min value, the left half of the handle
goes beyond the left of the slider, and when at the max point, the right half of the handle
goes beyond the right of the slider. We already made the handle skinnier than normal
and got rid of the left border so it sticks to the range a little better. But we still need a
little bit of adjustment when near the min. That’s what these lines are for:

slide: function(event, ui) {
 $('.ui-slider-handle', this).css('margin-left',
 (ui.value < 3) ? (1 - ui.value) + 'px' : '');
 if (ui.value >= 0 && ui.value <= audio.duration) {
 audio.set('currentTime', ui.value);
 }
},
change: function(event, ui) {
 $('.ui-slider-handle', this).css('margin-left',
 (ui.value < 3) ? (1 - ui.value) + 'px' : '');
}

Also, in the slide callback, we’re checking whether the value is valid before telling the
audio to go to that point. This is a case where the user is dragging the slider around,
and we need to move around the playback point in the song. This allows for “scrub-
bing.” If we only handled this in the change callback, the audio wouldn’t change until
the user let go of the mouse, after clicking or dragging the slider handle to a new point.
Figure 14-3 shows the slider we’ve created.

Figure 14-3. Slider track for song position

Progress bar in track to show buffering

Get ready for some fun. What if I told you we can call two different jQuery UI plugins
on the same element? It works really well in this case. We already have a track bar,
which we created as a <div>, calling .slider() on it. In addition to adding a ui-
slider class to our .track element, the jQuery UI Slider plugin created and appended
a couple elements to our track, a slider handle (.ui-slider-handle) and a slider range
(.ui-slider-range), since we specified range: 'min'. Fortunately, that’s as much as it
did to our <div>. It’s still a <div>, and it’s still our <div>. So, let’s dual-purpose it and
call .progressbar() on it. This will make it so our buffer display runs behind the range
display that shows our current time. Check this out.

14.10 Creating a jQuery UI Music Player | 333

Here’s the CSS:

.mplayer .ui-progressbar .ui-progressbar-value { border-style: none; }

Here’s the JavaScript:

var secondsCached = 0, cacheInterval;
$('.mplayer .track')
 .progressbar({
 value: secondsCached / secondsTotal * 100
 })
 .find('.ui-progressbar-value').css('opacity', 0.2).end();

cacheInterval = setInterval(function() {
 secondsCached += 2;
 if (secondsCached > secondsTotal) clearInterval(cacheInterval);
 $('.mplayer .track.ui-progressbar')
 .progressbar('value', secondsCached / secondsTotal * 100);
}, 30);

There’s no HTML, since we’re reusing the .track element from the previous section.
Oh, and in case you hadn’t noticed, that buffering code is totally bogus. Well, it works;
it just isn’t representing a song being buffered, only simulating it. But it works great! If
you really had a music resource that was coming in and buffering and your audio API
supported notifying you of that, you’d bind to the event and set the progress bar value
as shown earlier, between 0 and 100. Unlike Slider, you can’t specify a custom max for
progress. But that makes sense, right? Progress goes from 0 percent to 100 percent.

OK, so we have got some proof-of-concept code here. When the page loads, the buffer
progress will race away as if the file is flying in, but not quite as if it’s local. It’s fun to
watch. Figure 14-4 shows the progress bar we’ve created. The other thing that’s bogus
about our buffer progress indicator? Since it isn’t a real buffer progress, you can jump
beyond it. What will happen? That depends on your audio API and backend. So, if you
don’t have a buffer progress or don’t want or need one, skip this. Or leave it in for looks.

Figure 14-4. Progress bar in track to show buffering

Volume slider

So, we need to add a volume control. Slider is a good fit. Drag from volume: 0 to volume:
1 and set step to 0.01:

$('.mplayer .volume').slider({
 max: 1,
 step: 0.01,
 value: audio.volume,
 slide: fnSlide,
 change: fnChange
});

334 | Chapter 14: User Interfaces with jQuery UI

Bam. Why not? Well, that would certainly work. But it would take up a bit of space.
And orientation may be an issue. If we lay it out horizontally, which is the default for
Slider, we’re competing with the track for horizontal space. Not to mention we’re
“lopsiding” our player. OK, so should we add orientation: 'vertical' to the slider
options? Well, that too would work, but it would mean our player is now 100 pixels
tall and only in order to fit the volume control. The rest of the controls need just over
30 pixels. There has to be a better way.

There is. Keep the volume slider’s bar hidden when not in use. We’ll keep the slider
handle visible and add a little speaker icon to it. Then we’ll hide the rest by setting the
height of the control to 0. When the user hovers over the handle, we’ll set the height
to 100 pixels. On mouseout, we’ll remove that, and it will go back to 0 height. Also,
with its container positioned absolutely in a relative wrapper, it won’t affect the overall
height of the player when it is fully visible.

There’s one problem. When the bar appears, let’s say the volume is at 0.10, or 10
percent. That would mean the handle is near the bottom. Should the handle jump
down? Or the bar up? And what about while the user slides it? What if they drag from
10 percent up to 90 percent and then let go? It would jump back down when the bar
hides again. Yuck.

So, here’s what we’re going to do. We’re going to keep the handle fixed the whole time.
The user will drag up for increase and down for decrease. The bar, including the range:
"min" shaded portion below the handle, will move down and up accordingly.

Here’s the CSS:

.mplayer .volume-container { position: absolute; top: 12px; right: 12px; }

.mplayer .volume { height: 0; margin-top: 5px; }

Here’s the HTML:

<div class="mplayer ui-widget">
 <div class="buttons-container">

 </div>

 <div class="track"></div>

 <div class="volume-container">
 <div class="volume">
 <a href="#" class="ui-state-default ui-corner-all
ui-slider-handle">

 </div>
 </div>
</div>

14.10 Creating a jQuery UI Music Player | 335

Here’s the JavaScript:

$('.mplayer .volume')
 .slider({
 max: 1,
 orientation: 'vertical',
 range: 'min',
 step: 0.01,
 value: audio.volume,
 start: function(event, ui) {
 $(this).addClass('ui-slider-sliding');
 $(this).parents('.ui-slider').css({
 'margin-top': (((1 - audio.volume) * −100) + 5) + 'px',
 'height': '100px'
 }).find('.ui-slider-range').show();
 },
 slide: function(event, ui) {
 if (ui.value >= 0 && ui.value <= 1) {
 audio.set('volume', ui.value);
 }
 $(this).css({
 'margin-top': (((1 - audio.volume) * −100) + 5) + 'px',
 'height': '100px'
 }).find('.ui-slider-range').show();
 },
 stop: function(event, ui) {
 $(this).removeClass('ui-slider-sliding');
 var overHandle = $(event.originalEvent.target)
 .closest('.ui-slider-handle').length > 0;
 if (!overHandle) {
 $(this).css({
 'margin-top': '',
 'height': ''
 }).find('.ui-slider-range').hide();
 }
 },
 change: function(event, ui) {
 if (ui.value >= 0 && ui.value <= 1) {
 if (ui.value != audio.volume) {
 audio.set('volume', ui.value);
 }
 }
 }
 })
 .mouseenter(function(event) {
 if ($('.ui-slider-handle.ui-state-active').length) {
 return;
 }
 $(this).css({
 'margin-top': (((1 - audio.volume) * −100) + 5) + 'px',
 'height': '100px'
 }).find('.ui-slider-range').show();
 })

336 | Chapter 14: User Interfaces with jQuery UI

 .mouseleave(function() {
 $(this).not('.ui-slider-sliding').css({
 'margin-top': '',
 'height': ''
 }).find('.ui-slider-range').hide();
 })
 .find('.ui-slider-range').addClass('ui-corner-bottom').hide().end();

While it’s being dragged, we’re adjusting the negative margin-top of the bar in inverse
proportion to the current value, keeping the handle static. This happens here:

$(this).parents('.ui-slider').css({
 'margin-top': (((1 - audio.volume) * −100) + 5) + 'px',
 'height': '100px'
})

Figure 14-5 shows the volume slider in our player.

Figure 14-5. Volume slider

This interaction requires recognizing that you’re not dragging the bar, which is what’s
moving, in the opposite direction of your mouse. But meanwhile, your mouse, the size
of the shaded range, and your volume do move in logical concert: down for down, up
for up. Also, if you prefer, you can hover so that the bar appears, move your mouse to
the position on the bar where you want to set the volume, and click.

Widget background and top styling

OK, let’s add a couple elements with jQuery UI CSS Framework classes to style the
player in a way that matches the controls within it:

Here’s the CSS:

.mplayer .bg { position: absolute; width: 100%; height: 100%; top: 0;
 bottom: 0; left: 0; right: 0; border: none; }
.mplayer .rod { position: absolute; top: −2px; left: −0.4%; right: −0.4%;
 width: 100.8%; height: 3px; overflow: hidden; border: none; }
.mplayer .hl { position: absolute; top: 2px; left: 1%; right: 1%; width: 98%;
 height: 1px; overflow: hidden; border: none; }
.mplayer .hl2 { position: absolute; top: 2px; left: 2%; right: 2%; width: 96%;
 height: 3px; overflow: hidden; border: none; }

14.10 Creating a jQuery UI Music Player | 337

Here’s the JavaScript:

$('.mplayer').each(function() {
 $('.bg:first', this).css('opacity', 0.7);
 $('.bg:last', this).css('opacity', 0.3);
})
$('.mplayer .rod').css('opacity', 0.4);
$('.mplayer .hl').css('opacity', 0.25);
$('.mplayer .hl2').css('opacity', 0.15);

Here’s the HTML:

<div class="mplayer ui-widget">
 <div class="bg ui-widget-header ui-corner-bottom"></div>
 <div class="bg ui-widget-content ui-corner-bottom"></div>
 <div class="rod ui-widget-header"></div>
 <div class="hl ui-widget-content"></div>
 <div class="hl2 ui-widget-content"></div>
 <div class="buttons-container">

 </div>

 <div class="track"></div>

 <div class="volume-container">
 <div class="volume">
 <a href="#" class="ui-state-default ui-corner-all
ui-slider-handle">

 </div>
 </div>
</div>

Here we’re using opacity and layering to squeeze a couple more shades out of any
jQuery UI theme. Figure 14-6 shows the finished product:

Figure 14-6. Widget background and top styling

338 | Chapter 14: User Interfaces with jQuery UI

Finally, Figure 14-7 shows a sampling of the jQuery UI music player in a few prebuilt
jQuery UI themes.

Figure 14-7. jQuery UI media player in a few different ThemeRoller themes

14.10 Creating a jQuery UI Music Player | 339

CHAPTER 15

jQuery UI Theming

Maggie Wachs, Scott Jehl, Todd Parker, and Patty Toland
(Filament Group, Inc.)

15.0 Introduction
One of the advantages of jQuery UI is its ease of integration into such a wide range of
websites and applications. And a major factor for successful integration is the ability
to apply a look and feel to jQuery UI widgets that’s consistent with a larger site or
system design.

jQuery UI is expressly designed to make custom theming easy. You can create highly
customized visual styles for your widgets—that automatically include not only colors
and textures but a full complement of interaction states—using the following:

• The jQuery UI CSS Framework, a comprehensive set of CSS classes for applying
consistent styles and behaviors across widgets

• ThemeRoller, jQuery UI’s tool for theme creation

Together, they provide ways to easily and consistently change the look and feel of both
official jQuery UI widgets and your own custom components so they blend seamlessly
with your site or application.

This chapter focuses how to get the most out of these tools, whether you’re using them
to customize an official jQuery UI widget or incorporating them into your own custom
development workflow. We’ll start with a summary of the jQuery UI CSS and how it
works with ThemeRoller, and then we’ll present four theming recipes in this order:

1. Styling jQuery UI widgets with ThemeRoller

2. Overriding jQuery UI layout and theme styles

3. Applying a ThemeRoller theme to non-jQuery UI components

4. Referencing multiple themes on a single page

341

Each recipe starts with a basic sample design challenge and progressively applies tech-
niques to customize the theme. For that reason, you’ll frequently see references from
one recipe to another in this chapter.

Before we dive into styling the widgets, it’s important to understand how all of the
jQuery UI classes are structured and how they work with ThemeRoller.

Understanding the Components of jQuery UI CSS
Our primary goal when creating the jQuery UI CSS was to simplify the setup process
so that developers could deploy widgets quickly and seamlessly in their code without
having to sift through complex markup or CSS.

In our early experience integrating third-party JavaScript widgets into our own projects,
customizing the appearance of library widgets was significantly harder than setting up
the scripts to run properly. Unlike the scripts, which were designed to be customized—
core and widget plugin scripts handle complex tasks behind the scenes and configurable
options are made easily accessible for customization—widget styles were generally
keyed off of a single class or baked into the markup. We had to identify classes in the
markup and deconstruct their style rules before we could modify them, which usually
involved several hours of sifting through the code and CSS, using Firebug to figure out
where classes are assigned or find inline styles, retrofitting background images, and
then replacing style rules or editing classes in the markup to make the appearance
approximate our project’s design. (And that was only when the code and CSS were
reasonably organized and consistent.)

To us, this felt backward; it would be much easier to add a custom look and feel to a
mostly unstyled widget than to pick apart the CSS of an already-styled widget and try
to figure out which rules can safely be replaced. We resolved to develop a better way
to apply styles consistently so they would work coherently across a group of widgets
and within a larger site or application design system.

To solve this problem for jQuery UI, we divided the jQuery UI CSS into logical com-
ponents, similarly to how the scripts are structured, and separated core structural styles
required for a widget to function properly (positioning, floats, and padding) from the
customizable theme styles (colors and background images). So, the classes that devel-
opers can modify to make the widgets match their project are now grouped into two
basic categories:

• Widget-specific classes include all styles required to format a particular widget’s
structure and layout, including positioning, spacing and dimensions, and other
layout-related styles to help it function correctly. For instance, Widget classes for
the tabs include styles that float tabs so they appear in a horizontal row and selec-
tively hide the associated tab content panels.

Widget-specific classes are included in the accompanying CSS when you download
one or more jQuery UI widgets (see Recipe 15.1 to learn how to download and

342 | Chapter 15: jQuery UI Theming

reference jQuery UI CSS). Classes are named for the specific widget they control,
and the class name always begins with the prefix ui-[widgetname], e.g., ui-tabs.

• Framework classes apply a customized theme look and feel—including a base font,
background colors and textures, font and icon colors, shape (corner radius), and
interaction state feedback—across all widgets. Framework classes are named
according to their basic purpose—for example, some provide state feedback
(ui-state-default, ui-state-hover) or apply rounded corners (ui-corner-all,
ui-corner-top)—and are intended for reuse throughout a website or application.
In fact, they can be applied to any widget, including those created by jQuery UI or
another JavaScript library or your custom widgets.

In practice, we style jQuery UI widgets by assigning a combination of these classes—
one or more descriptive Widget-specific classes along with a series of generic Frame-
work classes—that work together to create the final appearance. For example, look at
the markup for the accordion header:

<h3 class="ui-accordion-header ui-state-active ui-corner-top">code</h3>

Three classes are applied that assign very specific styles:

• ui-accordion-header is a Widget-specific class unique to this component; it sets
structural style rules (positioning, dimensions, margin, padding) but does not ap-
ply any colors or images.

• ui-state-active is a Framework class that adds the theme colors and background
images to show its active state.

• ui-corner-top, another Framework class, specifies that the header should have
rounded top corners.

Although this approach means that multiple classes are assigned to some elements, it’s
a powerful system that makes it easy to apply a very lightweight theme to an unlimited
number of widgets, even your own custom components. The careful separation of the
structural styles from the theme also means that you can drop in a new theme at any
time without worrying about it breaking your existing widgets.

We also wanted to make it easy to create a new look and feel, or accurately match an
existing design, without deep expertise in CSS or photo-editing tools like Adobe
Photoshop. ThemeRoller lets developers edit style rules set by the Framework classes
without having to touch the CSS or do any manual image production.

ThemeRoller is a web application that offers a fun and intuitive interface for designing
and downloading custom themes for jQuery UI. ThemeRoller provides levers to change
the following theme styles:

• Base font for all widgets: The base font sets a standard typeface, size, and weight
(normal or bold) that will be used throughout all the widgets in the theme. By
default, font size is specified in “em” units. We recommend using ems over pixels
so text will scale with the widget containers when the user manipulates browser

15.0 Introduction | 343

text size, but you can specify pixels if you like. As with standard CSS, it’s good
practice to provide a range of fonts in case your first font of choice is not installed
on a user’s computer and to end the font string with the generic font style like
“serif” or “sans-serif.”

• Corner radius: A corner radius can be applied consistently across all widgets in the
theme to give them a rounded appearance. Each radius value must be followed by
a unit: pixels for a fixed radius, ems for a radius that responds to text size changes,
or a value of zero for perfectly square corners. Smaller pixel values make the corners
of widgets more square, while larger values make the corners more round.

As of this writing, corners set in CSS3 as we do in the Framework are
not supported in some modern browsers, including Internet Explorer.
Please see the sidebar in Recipe 15.1 to learn how to bring rounded
corner support to these browsers.

• Headers, toolbars, and content areas: Each of these levers sets a background color
with a semitransparent texture and colors for border, text, and icons. For example,
the header style is used for the title bar of a dialog or datepicker and the selected
range of a slider or progress bar, while the content style is used for the content area
of a selected accordion or tab.

• Default, active, and hover states for clickable elements: There are three states that
represent different points in the user interaction: default is the standard clickable
state, hover is used to provide visual feedback when the mouse is placed over the
item, and active is used when the item is currently selected. Each clickable state
is defined by a background color with a semitransparent texture and by colors for
border, text, and icons. Keep in mind that each state should be different enough
to provide adequate feedback to the user.

• Highlight and error states: These are special styles for communicating states in a
system. The highlight state is used on text messages to draw a user’s attention, as
well as to indicate today’s date in the calendar widget, and is also useful for high-
lighting when an Ajax screen update has occurred. The error state can be used to
indicate that there is a problem that requires the user’s attention such as displaying
a form validation issue or alerting the user to a system failure. Both are defined by
a background color with a semitransparent texture and by colors for border, text,
and icons. These states should contrast with the standard content text and back-
ground colors in your theme and should also be different enough from each other
so that it’s clear which one is meant to draw attention versus communicate an alert
or warning message.

• Modal screen for overlays: The modal screen is a layer that sits between a modal
dialog and the page content beneath it and is commonly used to make page content
appear temporarily disabled while the modal is showing. This lever styles the modal

344 | Chapter 15: jQuery UI Theming

screen’s background color and opacity. If you don’t want a modal overlay at all for
a particular widget, that can be toggled through the widget’s modal option.

• Drop shadow styles: As with the highlight and error states, a dropshadow style can
be optionally applied to overlays. Drop shadows have background color, texture,
and opacity (like headers and clickable elements), and also have a shadow thickness
specifying how far the shadow should be offset from the top-left corner of its com-
ponent and a corner radius. To make the shadow appear evenly around the com-
ponent, the top and left offset values should be negative and equal to the shadow
thickness. As with standard corner radius, you can set a shadow corner radius in
pixels or ems or enter zero to make corners square.

The ThemeRoller interface lets you directly edit all of the previous Framework class
styles and preview your design changes in functioning jQuery UI widgets. Once you’ve
created a theme, ThemeRoller automatically generates and packages all required CSS
and background images—you simply download the resulting theme stylesheet and
reference it in your project. (You’ll find ThemeRoller in the Themes section of the
jQuery UI site or at http://themeroller.com.)

Now that we’ve reviewed the jQuery UI CSS and ThemeRoller, we’ll look at four recipes
that use them to customize themes. First, we’ll start with the simple step of creating a
theme and styling widgets with ThemeRoller (Recipe 15.1); then we’ll move through
slightly more complex steps of overriding Framework classes for more customized
themes (Recipe 15.2), using Framework classes throughout your project (Rec-
ipe 15.3), and finally looking at multiple themes on a single page for complex interfaces
(Recipe 15.4).

For designers and developers who are interested in editing and
previewing themes for jQuery UI and custom ThemeRoller-ready com-
ponents in place in your website or application, we developed a down-
loadable ThemeRoller bookmarklet tool. To learn more about and
download the bookmarklet, go to ui.jquery.com/themeroller.

15.1 Styling jQuery UI Widgets with ThemeRoller
Problem
jQuery UI widgets used in your website or application must match an established
design.

Solution
Use ThemeRoller, a simple web application for editing the jQuery UI CSS Framework
classes to customize the look and feel of the jQuery UI widgets.

15.1 Styling jQuery UI Widgets with ThemeRoller | 345

http://themeroller.com
http://ui.jquery.com/themeroller

This recipe makes the following assumptions:

• You have a basic knowledge of how CSS works and, specifically,
how styles cascade, take precedence, and can be scoped using se-
lector classes, ids, or elements. (For our recommended resources,
please refer to the Appendix at the end of this chapter.)

• You’re already familiar with jQuery UI CSS classes. (If not, just
review “Understanding the Components of jQuery UI
CSS” on page 342.)

Let’s walk through an example.

We’re working on a new website for booking travel reservations, and specifically, we’re
building out the part of the interface for booking a flight. The design consists of a set
of tabs for selecting the type of reservation (flight, car rental, or package deal), and the
Book a Flight tab includes a form for entering the number of passengers, selects for the
departure and arrival cities, calendars to set departure and return travel dates, and a
submit button (see Figure 15-1).

Figure 15-1. Final target design for travel application

346 | Chapter 15: jQuery UI Theming

For this recipe, we’ll use the jQuery UI widgets for the tabs and datepickers, and style
them with a custom theme created in ThemeRoller. (You can also modify the theme
stylesheet beyond the standard ThemeRoller output to more closely match your
design—you’ll see how in Recipes 15.2–15.4).

Step 1. Open ThemeRoller

Open the jQuery UI website at http://jqueryui.com and choose Themes from the top
navigation bar, or go directly to http://themeroller.com.

The interface for ThemeRoller is grouped into two main sections, as shown in Fig-
ure 15-2:

• ThemeRoller toolbar pane in the left column, which provides tools to set and change
all style settings in a theme

• Sample widgets preview pane on the right for previewing your style selections—each
widget is interactive to show the full range of styles (use your mouse to see hover
and active styles, for example) and updates in real time when you edit styles using
the toolbar

Figure 15-2. The default view of ThemeRoller, with the toolbar pane on the left and widgets preview
pane on the right

15.1 Styling jQuery UI Widgets with ThemeRoller | 347

http://jqueryui.com
http://themeroller.com

The ThemeRoller toolbar provides two distinct ways to customize themes, accessible
with the tabs at the top of the toolbar column:

• The Roll Your Own tab (Figure 15-3) is the workspace where you create custom
styles for your theme. Customizable settings are grouped into sections with inputs
and tools for quick style selection, including setting the base font and corner radius
across all widgets and setting background colors and textures, text color, and icon
color.

Each section is closed by default and displays current styles in the form of a small
icon to the right of the label. Open/close sections as needed while you edit, and
preview sample widgets to the right, which update to reflect your changes in
real time.

JavaScript is not required to use ThemeRoller. If JavaScript is dis-
abled, a Preview button appears that may be clicked to view
changes.

• The Gallery tab (Figure 15-3) offers a range of preconfigured themes that can be
downloaded as is or used as a starting point for a more customized theme.

Figure 15-3. ThemeRoller’s Roll Your Own tab (A) provides controls to change the font, corner radius,
and colors for a range of interaction states; the Gallery tab (B) provides one-click access to a variety
of prebuilt themes

348 | Chapter 15: jQuery UI Theming

Step 2. Create and preview a theme

For our travel reservations app, we’ll select a gallery theme called Sunny that’s close to
our final design (as shown in Figure 15-4).

Figure 15-4. ThemeRoller’s gallery themes offer a wide range of starting points for customizing
designs; Sunny (A) shares many styles with our target design (B)

Sunny specifies similar overall background, font face, and font colors to our final design,
but a couple of styles will need to be edited to more closely match our design—for
instance, Sunny’s tabs are yellow with a gray background, while our tabs are dark gray
with a white background.

We can easily change those settings by either clicking the Edit button below the Sunny
image in the gallery (which will move you over to the Roll Your Own view) or clicking
the Sunny image in the gallery to activate it and then clicking over to the Roll Your
Own tab at the top of the toolbar.

Once you have the Sunny settings in the Roll Your Own tab, the toolbar prefills with
all the theme’s settings, and you can start editing. Let’s tweak the following settings to
make the Sunny theme match our design:

• Set the base font for all widgets: The default font in the Sunny theme and our target
design seem very similar, but we can simply open the Font Settings section (as
shown in Figure 15-5) and either confirm that they are correct or fill in alternate
values for font family, weight, and size. The font family accepts multiple comma-
separated font names (as in standard CSS notation). Here are some design notes
and tips:

15.1 Styling jQuery UI Widgets with ThemeRoller | 349

— By default, the font size is specified in “em” units. We recommend using ems
in favor of pixel text sizes so widget text will scale with the widget containers
when the user manipulates browser text size.

— Provide a range of fonts in case your first font of choice is not installed on a
user’s computer. It’s good practice to end a font string with the generic font style
like “serif” or “sans-serif.”

Figure 15-5. The Font Settings and Corner Radius sections

• Apply a corner radius: Our design includes rounded corners on the datepicker and
tabs. You can set a corner radius on jQuery UI widgets in ThemeRoller by opening
the Corner Radius section (as shown in Figure 15-5) and entering a value followed
by a unit: pixels for a fixed radius, or ems for a radius that responds to text size.
Smaller pixel values make the corners of widgets more square, while larger values
make the corners more round. For perfectly square corners, set the value to zero.

350 | Chapter 15: jQuery UI Theming

At the time of writing of this edition, some modern browsers, most
notably Internet Explorer, do not support the CSS3 border-
radius property and as a result do not render the rounded corner
styles applied by Framework classes. Corners appear square in-
stead. If your design includes rounded corners and must render
consistently across all browsers, you may want to use a corner-
rounding JavaScript library like ddRoundies.

We’ve written a basic tutorial on our Filament Group lab explain-
ing how to incorporate ddRoundies into your project: “Achieving
Rounded Corners in Internet Explorer for jQuery UI with
DD_roundies”.

• Make the default tabs and buttons gray. Unselected tabs, like accordion section
headers or datepicker buttons, are clickable elements, and each is assigned a class
that represents its current clickable state: default, hover, or active. In this case we’ll
change the default state background color from gray to yellow and update text and
border color to match our design (Figure 15-6):

1. Open the “Clickable: default state” section.

2. Focus your cursor on the background color field (it contains a hexadecimal
value preceded by #), and pick a new dark gray color or enter a hexadecimal
value; in this case we’ll enter the value #333333.

3. The text color is dark gray and now blends with our background, so we’ll also
update the default state text color to contrast with the background. We’ll
change the text color value to #FFFFFF.

4. As with the text, the icons that appear in the header are gray and need to be
updated so they don’t disappear against the gray background. Let’s give them
a value of #EEEEEE, a color that will complement but won’t appear higher con-
trast than the text.

5. Finally, let’s change the border color from yellow to light gray; enter value
#D2D2D2.

6. Hit the Tab or Enter key, or click elsewhere on the page, to preview the changes
in the widgets on the right.

15.1 Styling jQuery UI Widgets with ThemeRoller | 351

http://www.filamentgroup.com/lab/achieving_rounded_corners_in_internet_explorer_for_jquery_ui_with_dd_roundi
http://www.filamentgroup.com/lab/achieving_rounded_corners_in_internet_explorer_for_jquery_ui_with_dd_roundi
http://www.filamentgroup.com/lab/achieving_rounded_corners_in_internet_explorer_for_jquery_ui_with_dd_roundi

Figure 15-6. ThemeRoller’s section for the Clickable: default state

• Update the hover state to match the new tab color: The clickable hover state style is
intended to be shown whenever you mouse over a clickable component like a tab,
accordion section, or datepicker button. Now that the default state is gray, we’ll
adjust the hover state’s background and text colors to coordinate and use a com-
plementary darker shade of gray for the background with white text and icons:

1. Open the “Clickable: hover state” section.

2. In the background color field enter the value #111111.

3. Update the text and icon colors to #FFFFFF.

4. Let’s also make the border color better match our design by setting it to a
slightly darker gray than the default border, #888888.

• Change the tabs and datepicker header backgrounds to white: The header style ap-
pears in several jQuery UI widgets: behind the tabs, at the top of datepicker’s
month/year feedback and navigation buttons, as the slider range, and as the pro-
gress bar completion indicator. In our design the header is a flat white color with
gray text and dark yellow icons:

1. Open the Header/Toolbar section.

2. In the background color field enter a hexadecimal value of #FFFFFF.

3. Click the texture icon next to the background input, and choose the first op-
tion, “flat.” (Hover over any texture image to see the name.) Doing this re-
moves the background image so that the style only sets a flat background color.

4. Set the background opacity to 100 percent to ensure that the header is fully
opaque.

352 | Chapter 15: jQuery UI Theming

5. The text color is white and doesn’t show up on our new background, so let’s
change it to dark gray to match our default clickable state, #333333.

6. Finally, change the border and icon colors to #EDAA12, and the text color to
white, #FFFFFF.

• Change the content container border color to yellow: Content borders appear around
accordion sections, and define the tabs, dialog, slider, datepicker, and progress bar
containers. In the design the border is the same light yellow we used for the header
border:

1. Open the Content section.

2. Focus on the border color field, and enter the value #EDAA12.

• Update the “active” state border color to blend with the container: After updating
the container border color, you’ll see that the selected accordion section and se-
lected tab still have dark gray borders. This color is set with the clickable active
state class:

1. Open the “Clickable: active state” section.

2. Focus on the border color field, and enter the value #EDAA12.

You can “save” a theme at any point simply by bookmarking the page;
ThemeRoller updates the URL with all relevant styles each time the
preview pane refreshes. Bookmark your custom theme—even book-
mark multiple themes to compare them side by side—and reload any
theme from its bookmark to modify and refine it for download.

Also, for any theme downloaded from ThemeRoller, a complete theme
URL is included in the stylesheet. Open the stylesheet (e.g., jquery-
ui-1.7.1.custom.css), and search for the comment that starts with this:
“To view and modify this theme, visit http://jqueryui.com/
themeroller/...”

At this point, we have made our ThemeRoller theme match the design of our travel
reservations app as closely as we can (see Figure 15-7). It’s now ready for download.

15.1 Styling jQuery UI Widgets with ThemeRoller | 353

Figure 15-7. Our final customized ThemeRoller theme that closely matches our design

Step 3. Download the jQuery UI widgets and theme

Click the “Download theme” button at the top of the ThemeRoller toolbar’s Roll Your
Own tab, which navigates you to the jQuery UI download builder (see Figure 15-8).

In the right column under Theme, you’ll see Custom Theme pre-selected in the drop-
down.

If you chose a default theme from the gallery and made no changes to
it, you’ll see the name of that theme, e.g., Smoothness.

Next, we’ll select which jQuery UI components to download with our theme. All are
selected by default; simply uncheck those you don’t want to download, or click “De-
select all components” at the top of the Components section to download only the
theme stylesheet. For our travel reservations app, we need the jQuery UI core scripts
and those for tabs and the datepicker.

354 | Chapter 15: jQuery UI Theming

Finally, select which version of jQuery UI you’d like to use; the latest stable version is
selected by default. Click Download, and save the ZIP file locally. The downloaded ZIP
file will be named like jquery-ui-1.7.1.custom.zip.

(The Advanced Theme Settings section in the download builder’s Theme section allows
you to download a scoped theme—we’ll get to that in detail in Recipe 15.4.)

Figure 15-8. The jQuery downloader combines UI core, any interactions and widgets you select, and
your theme into a single zipped file

15.1 Styling jQuery UI Widgets with ThemeRoller | 355

The jQuery UI CSS is updated with each new version of jQuery UI—
e.g., new releases will include not only updated scripts but may also
include modifications and updates to the CSS as well.

At the time of this writing, the version of jQuery UI is 1.7, and recipes
and techniques in this chapter are applicable only to theming features
in that version.

Step 4. Merge files into your project directory

Next, we’ll open the ZIP file we downloaded in the previous step and review its con-
tents. jQuery UI files are arranged into the following directory structure; the order of
the folders and files may vary depending on your operating system (Figure 15-9 shows
the folder opened on Mac OS X).

Figure 15-9. jQuery download folder structure

index.html
Sample markup for the UI components you selected.

If you chose not to download any components, this file will not be
included in the download.

/css
Contains a theme folder (e.g., custom-theme) with the following files:

• An images directory with framework icons and background textures.

356 | Chapter 15: jQuery UI Theming

• Your theme stylesheet, e.g., jquery-ui-1.7.1.custom.css, which includes the
styles you just edited and, if downloaded, the widget-specific styles necessary
for the widgets to function properly.

/js
Compiled jQuery UI JavaScript files.

/development-bundle
Individual component scripts and CSS used to create the compiled versions found
in the css and js folders, open source license text, and related resources necessary
for advanced development with jQuery UI.

When working on your own project, be sure to review the markup in index.html and
use it as a guide along with the Demos & Documentation at http://jqueryui.com to
integrate the component markup and scripts into your project.

For our travel application, we’ll copy the theme folder in the css directory and paste it
to the styles directory in our project; to keep it simple, we named the styles folder css
to match.

It’s important to maintain the established directory structure within the
theme folder so that the icon images are referenced properly by the
theme classes. If you do change the theme directory structure, you will
likely have to replicate those changes if later you decide to upgrade to a
newer version of the jQuery UI scripts and CSS.

Step 5. Reference the theme stylesheet in your project

Finally, we’ll include a reference to the theme stylesheet in the <head> of our page.

Keep in mind that the stylesheet reference should always appear before any references to
jQuery UI scripts so that the CSS loads first; this is necessary because some widgets
depend on the CSS to function properly.

We’ll reference the theme stylesheet (in bold) before all scripts in our travel
reservations app:

<!doctype html>
<html>
<head>
 <meta charset="UTF-8">
 <title>travel application | Book a Flight, Rent a Car, or Find Package
Deals</title>
 <!-- jQuery UI styles -->
 <link rel="stylesheet" type="text/css" href="css/custom-theme/jquery-ui-
1.7.1.custom.css" />

 <!-- jQuery core & UI scripts -->
 <script type="text/javascript" src="js/jquery-1.3.2.min.js"></script>
 <script type="text/javascript" src="js/jquery-ui-1.7.1.custom.min.js"></script>

 <script type="text/javascript">

15.1 Styling jQuery UI Widgets with ThemeRoller | 357

http://jqueryui.com

 $(function(){
 $('#travel').tabs();
 $("#departure-date-picker").datepicker({altField: '#departure-date',
altFormat: 'MM d, yy'});
 $("#arrival-date-picker").datepicker({altField: '#arrival-date',
altFormat: 'MM d, yy'});
 });
 </script>
</head>

When the jQuery UI widget markup and styles are in place for your project, preview
your page in a browser to confirm that the styles are being applied correctly. Previewing
our travel application reveals that the theme is applied correctly—as you can see in
Figure 15-10, our default tabs are gray, the headers are white, and the text and icon
colors match our selections.

Figure 15-10. Our design interface with customized ThemeRoller theme applied (A) and our target
final design (B)

But our interface clearly needs more work to match our target design (Figure 15-10):
the tabs are too small and are missing their custom icons, and the datepicker header is
enclosed within the datepicker widget when it should appear on top. In Recipe 15.2
we’ll review how to make small adjustments to theme styles so that these elements
better match our design.

358 | Chapter 15: jQuery UI Theming

If the jQuery UI widgets in your page are not picking up the theme
stylesheet, double-check the directory path to the theme stylesheet
against the reference in your page, and correct any typos. If that doesn’t
solve the issue, temporarily disable any non-jQuery styles or scripts to
test whether they’re interfering with how the theme stylesheet is loaded
or rendered, and fix any related bugs.

Discussion
Since ThemeRoller themes are structured to deliver a holistic experience and apply
across multiple widgets, it helps to think about how the various Framework classes
interact with one another. If you choose to create your own theme from scratch, or
substantially modify an existing theme, here are some points you might want to
consider:

To create uniform backgrounds for headers and toolbars and content areas to make
the “on” state tab appear seamlessly connected to the visible content panel, and match
the content area background and borders to your clickable active state background and
borders.

For clickable elements, states should be clearly different enough to provide adequate
feedback to the user. Here are a couple of ways to make sure the states work together
to deliver distinctive visual differentiation:

• Use mirror image textures for the default and active clickable states to achieve a
three-dimensional look and feel. For instance, a “highlight” texture for the default
button state pairs well with an “inset” texture for the active button state. The
button will look like it physically depresses on click.

• If you do use the same texture for clickable and hover, make sure the background
color and image opacity are different enough (generally at least a 10 percent shift)
to provide a clear visual change.

Optimize your theme for speed by using the same image for multiple styles. For
example:

• When you use the same icon color for multiple states, the stylesheet will make
fewer HTTP requests, improving page performance.

• You can also use the same background image (color plus texture opacity) for
multiple states as well. If you do this, it’s important to make sure that the other
style elements—border, text, and icon colors—are distinct enough to make a clear
differentiation.

15.1 Styling jQuery UI Widgets with ThemeRoller | 359

To make changes to your custom theme without having to start from
scratch, open the original theme stylesheet, search for the comment that
starts with “To view and modify this theme, visit http://jqueryui.com/
themeroller/...,” and copy and paste the theme URL into a browser’s
address bar to open ThemeRoller with that theme’s settings preloaded.

15.2 Overriding jQuery UI Layout and Theme Styles
Problem
The customized (or standard gallery) theme you created in ThemeRoller, downloaded,
and referenced in your project is a partial match to your target design but doesn’t match
exactly. You need to modify the styles, but at the same time you want to ensure that
edits to these styles don’t make it difficult for you to upgrade to newer versions of
jQuery UI scripts and CSS.

Solution
Create custom override styles, scoped to the components that need additional non-
ThemeRoller styling, and structure them so that they don’t conflict with or overwrite
any standard jQuery UI CSS files.

The following recipe makes the following assumptions:

• You have a basic knowledge of how CSS works and, specifically,
how styles cascade, take precedence, and can be scoped using se-
lector classes, IDs, or elements. (For our recommended resources,
please refer to the Appendix at the end of this chapter.)

• You’re already familiar with how to create and edit a theme using
ThemeRoller. (If not, review Recipe 15.1, which describes in detail
how to create a theme and apply it to your pages.)

Each jQuery UI widget is styled to work out of the box when you download the jQuery
UI scripts and a theme stylesheet; no changes to the CSS are necessary to incorporate
the widget or styles into your site. But it’s possible that the styling may not exactly
match the design conventions established in your project. For example, you may want
to reduce the padding or use a custom background image for a header.

Let’s pick up where we left off in the previous recipe and continue working on our travel
reservations application. We created, downloaded, and applied the theme stylesheet
correctly; however, the default jQuery UI styles for the tabs and datepickers don’t quite
match the design for our project, as shown in Figure 15-11.

360 | Chapter 15: jQuery UI Theming

Figure 15-11. Our design interface with customized ThemeRoller theme applied (A) and the target
design provided by the designer (B)

Step 1. Review the widget markup and styles for jQuery UI plugins

First, we’ll review how classes are assigned in the jQuery UI widget markup to better
understand how they’re applied (and can therefore be overridden).

Let’s start with the tabs markup. When the jQuery UI tabs widget is initialized on the
page, the plugin script assigns several classes to the widget markup, as shown next.
(Please note that this is the markup that is transformed or inserted by the plugin script;
it’s the finished product, not the markup served to the page before JavaScript is run.)

Pay particular attention to the classes that begin with the prefix ui-tabs—the Widget-
specific classes for the tabs—highlighted in bold:

<div class="ui-tabs ui-widget ui-widget-content ui-corner-all" id="travel">
 <ul class="ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header
ui-corner-all">
 <li class="ui-state-default ui-corner-top ui-tabs-selected ui-state-active">
Book a Flight
 <li class="ui-state-default ui-corner-top"><a href="#travel-car"
id="tab-car">Rent a Car
 <li class="ui-state-default ui-corner-top"><a href="#travel-package"
id="tab-package">Package Deals

 <div id="travel-flight" class="ui-helper-clearfix ui-tabs-panel
ui-widget-content ui-corner-bottom"></div><!-- /flight -->
 <div id="travel-car" class="ui-tabs-panel ui-widget-content ui-corner-bottom
ui-tabs-hide"></div><!-- /car -->
 <div id="travel-package" class="ui-tabs-panel ui-widget-content ui-corner-bottom
ui-tabs-hide"></div><!-- /package -->
</div><!-- /travel -->

15.2 Overriding jQuery UI Layout and Theme Styles | 361

These classes set the styles that control the widget’s layout and enable it to function
properly according to its design. In this case, they transform an unordered list of links
and <div> elements into tabs with associated content panels. (Widget-specific classes
are discussed in detail in “Understanding the Components of jQuery UI
CSS” on page 342 earlier in this chapter.)

They also identify a widget’s individual components—like the header or content
panels—and as such they’re ideal for writing override rules to adjust layout features or
add customizations like drawn icons. The Widget classes for the tabs mark the follow-
ing components:

ui-tabs
Outer container that wraps around the tab navigation and content.

ui-tabs-nav
Container for the navigation options. The tab list items and links are styled using
descendant selectors, i.e., ui-tabs-nav li.

ui-tabs-selected
Selected tab “on” state, which is dynamically by the script. This class is assigned
to only one tab at a time.

ui-tabs-panel
Content areas that map to tabs.

ui-tabs-hide
Default state for the content panels. They’re hidden until selectively shown by the
user.

To see the style rules associated with these classes, open the theme stylesheet and find
(Ctrl/Command-F) or scroll to the block that begins with ui-tabs. Notice that the rules
only apply to layout characteristics, like positioning, padding, or border width, and are
absent any theme styles, like background or border colors:

.ui-tabs { padding: .2em; zoom: 1; }

.ui-tabs .ui-tabs-nav { list-style: none; position: relative;
padding: .2em .2em 0; }
.ui-tabs .ui-tabs-nav li { position: relative; float: left;
border-bottom-width: 0 !important; margin: 0 .2em -1px 0; padding: 0; }
.ui-tabs .ui-tabs-nav li a { float: left; text-decoration: none;
padding: .5em 1em; }
.ui-tabs .ui-tabs-nav li.ui-tabs-selected { padding-bottom: 1px;
border-bottom-width: 0; }
.ui-tabs .ui-tabs-nav li.ui-tabs-selected a, .ui-tabs .ui-tabs-nav
li.ui-state-disabled a, .ui-tabs .ui-tabs-nav li.ui-state-processing
a { cursor: text; }
.ui-tabs .ui-tabs-nav li a, .ui-tabs.ui-tabs-collapsible .ui-tabs-nav
li.ui-tabs-selected a { cursor: pointer; } /* first selector in group seems
obsolete, but required to overcome bug in Opera applying cursor: text overall
if defined elsewhere... */
.ui-tabs .ui-tabs-panel { padding: 1em 1.4em; display: block; border-width: 0;
background: none; }
.ui-tabs .ui-tabs-hide { display: none !important; }

362 | Chapter 15: jQuery UI Theming

Your theme stylesheet will contain the ui-tabs style rules only if you’ve
also downloaded the tabs plugin.

Step 2. Create an override stylesheet

We’ve found the best way to safely fine-tune a widget’s appearance is to write new style
rules that override the jQuery UI theme styles and append these “override rules” in a
separate stylesheet. Override rules are written against jQuery UI CSS class names and
as such must appear in the source order after your theme stylesheet; since styles are read
in order, the last style rule always takes precedence.

The jQuery UI library is constantly evolving to include more features with better-
streamlined code. By maintaining override styles in a separate file, you can customize
the widget styles as much or as little as you’d like and still preserve the ability to easily
upgrade the jQuery UI files as needed and simply overwrite your existing theme style-
sheet knowing that your override rules remain intact. Override rules can be listed in a
dedicated stylesheet for overriding default theme styles, or if you prefer to limit the
number of files linked to your pages (and therefore limit the number of requests to the
server), append override rules to the master stylesheet for your entire project.

As we work through this recipe, we’ll append override styles to the master stylesheet
for our project, travel.css, just below the block of custom styles we developed for our
application:

/* ----- CUSTOM STYLES for the travel application */
body { font-size: 62.5%; }
fieldset { padding: 0 0 1.5em; margin: 0 0 1.5em; border: 0; }
p, label { padding: 0 0 .5em; margin: 0; line-height: 1.3; }
p label { display: block; }
...
/* ----- OVERRIDE RULES for jQuery UI widgets */
/* tabs background styles go here */
...

And we’ll reference travel.css after the theme stylesheet in our page:

<!doctype html>
<html>
<head>
 <meta charset="UTF-8">
 <title>travel application | Book a Flight, Rent a Car, or Find Package
Deals</title>

 <!-- jQuery UI styles -->
 <link rel="stylesheet" type="text/css" href="css/custom-theme/jquery-ui-
1.7.1.custom.css" />

 <!-- overrides & custom styles for the travel application -->
 <link rel="stylesheet" type="text/css" href="css/travel.css" />
....

15.2 Overriding jQuery UI Layout and Theme Styles | 363

Step 3. Edit the style rules in your override stylesheet

Now that we’ve reviewed how the Widget classes are named and applied, and also how
to reference override styles in our project, let’s update our travel reservations applica-
tion with our customized tabs navigation bar and datepicker header style. We’ll tackle
the tabs first.

The design we created for the tabs is specific to the travel reservations
application, and we don’t necessarily want the same customizations, like the icons or
font size, to apply to every tab widget in our entire application. To ensure that these
styles only apply to the travel application, we’ll scope the override rules to our travel
application’s unique ID.

Each new rule will start with the Widget-specific class assigned to the component we
want to change; for example, when changing styles for the tab’s navigation bar, we’ll
write a rule against the .ui-tabs-nav class:

.ui-tabs-nav { /* our override style rule */ }

And scope it to our travel application by prepending its ID, travel:

#travel .ui-tabs-nav { /* our override style rule */ }

After applying the theme stylesheet, our tab’s navigation panel looks
like Figure 15-12: the individual tabs are small and surrounded by a border that’s sep-
arated from the outermost container by a few pixels of padding.

Figure 15-12. Our tabs with ThemeRoller theme applied before overrides

However, our design (Figure 15-13) calls for large tabs with icons and without a back-
ground—they appear to sit above the tab content.

Figure 15-13. Our target tab design

To override the default tab styles, we’ll make a handful of style changes:

1. First we’ll remove the outermost border. The entire tabs widget is surrounded by
a 1-pixel border and has a few pixels of padding. For the tabs to appear above the
content panels, we’ll remove both:

#travel.ui-tabs { padding: 0; border-width: 0; }

Scope overrides.

Write override rules.

364 | Chapter 15: jQuery UI Theming

There’s intentionally no space between our scoping ID, #travel,
and the .ui-tabs class because both are applied to the same element
in the markup:

<div id="travel" class="ui-tabs ui-widget ui-widget-content ui-corner-all">

2. Next, we’ll flatten the bottom of the tab navigation bar (set the bottom-corner
radius to zero) and remove its top and side borders. We’ll also remove any extra
padding so that the tabs appear flush with the left side of the widget, and we’ll
thicken the border width to 3 pixels to match our design:

#travel .ui-tabs-nav {
 border-width: 3px;
 border-top-width: 0;
 border-left-width: 0;
 border-right-width: 0;
 -moz-border-radius-bottomleft: 0;
 -webkit-border-bottom-left-radius: 0;
 -moz-border-radius-bottomright: 0;
 -webkit-border-bottom-right-radius: 0;
 padding: 0;
}

3. The tabs are a little too close together, so let’s add some right margin:

#travel .ui-tabs-nav li {
margin-right: .5em;
}

4. And update the selected tab, .ui-tabs-selected, so that it appears connected to
the tab content area. We’ll increase the border width to 3 pixels so that it matches
the design, and we’ll then fix the gap between the tab and content. The amount of
space between the tab and its content panel is directly related to the tab navigation
bar’s border thickness, so we can close the gap by applying a negative 3-pixel bot-
tom margin:

#travel .ui-tabs-nav li.ui-tabs-selected {
 border-width: 3px;
 margin-bottom: -3px;
}

5. Next, we’ll apply our custom icons. Because each icon is unique to its tab, we can
apply each icon as a background image using the unique ID of each tab. (Techni-
cally these aren’t override styles, but we’ll need to reference these rules when we
style the selected tab’s icon next.)

#tab-flight {
 background: url(../images/icon-tab-flight.png) no-repeat .3em center;
 padding-left: 50px;
}

#tab-car {
 background: url(../images/icon-tab-car.png) no-repeat .1em center;
 padding-left: 45px;
}

15.2 Overriding jQuery UI Layout and Theme Styles | 365

#tab-package {
 background: url(../images/icon-tab-package.png) no-repeat .1em center;
 padding-left: 45px;
}

6. The selected tab uses a slightly different icon that sits on a white, not gray, back-
ground. For each tab, we’ll add a rule that keys off the Widget-specific class for
the selected state, .ui-tabs-selected:

#travel .ui-tabs-nav li.ui-tabs-selected #tab-flight {
 background-image: url(../images/icon-tab-flight-on.png);
}

#travel .ui-tabs-nav li.ui-tabs-selected #tab-car {
 background-image: url(../images/icon-tab-car-on.png);
}

#travel .ui-tabs-nav li.ui-tabs-selected #tab-package {
 background-image: url(../images/icon-tab-package-on.png);
}

7. Our tabs should also have more padding and a larger font size:

#travel .ui-tabs-nav a {
 font-size: 1.5em;
 padding-top: .7em;
 padding-bottom: .7em;
}

8. To finish up the tabs, we’ll adjust the border around the content panel so that it
matches the 3-pixel border width we set on the selected tab:

#travel .ui-tabs-panel {
 border-width: 3px;
 border-top-width: 0;
 padding-top: 1.5em;
}

Now that our tabs match the design, let’s update the datepicker’s header. As illustrated
in Figure 15-14, with a few adjustments we can make the datepicker’s header compo-
nent—the bar above the calendar that contains navigation arrows and month/year
feedback—appear above, not contained within, the datepicker.

366 | Chapter 15: jQuery UI Theming

Figure 15-14. Our datepicker with ThemeRoller theme applied (A) and our target design (B)

Like the tabs, when the datepicker plugin is initialized on the page, the script writes
widget markup to the page that contains jQuery UI Widget-specific and Framework
classes to set its structural and themed appearance. In an abridged version of the
datepicker markup, you can see that Widget-specific classes conform to the naming
convention and begin with ui-datepicker, and identify each component:

<div id="ui-datepicker-div" class="ui-datepicker ui-widget ui-widget-content
ui-helper-clearfix ui-corner-all ui-helper-hidden-accessible">
 <div class="ui-datepicker-header ui-widget-header ui-helper-clearfix
ui-corner-all">
 title="Prev"><span class="ui-icon
ui-icon-circle-triangle-w">Prev
 <span class="ui-icon
ui-icon-circle-triangle-e">Next
 <div class="ui-datepicker-title">
 January<span class="ui-datepicker-
year">2009
 </div>
 </div>
 <table class="ui-datepicker-calendar">
 <thead>
 <tr>
 <th class="ui-datepicker-week-end">Su</th>
 ...
 </tr>
 </thead>
 <tbody><tr>
 <td class="ui-datepicker-week-end ui-datepicker-other-month"> 1 </td>
 ...
 </tr>
 </tbody>
 </table>
 <div class="ui-datepicker-buttonpane ui-widget-content">
 <button type="button" class="ui-datepicker-current ui-state-default
ui-priority-secondary ui-corner-all">Today</button>

15.2 Overriding jQuery UI Layout and Theme Styles | 367

 <button type="button" class="ui-datepicker-close ui-state-default
ui-priority-primary ui-corner-all">Done</button>
 </div>
</div>

The datepicker Widget classes are assigned the following default style rules:

.ui-datepicker { width: 17em; padding: .2em .2em 0; }

.ui-datepicker .ui-datepicker-header { position:relative; padding:.2em 0; }

.ui-datepicker .ui-datepicker-prev, .ui-datepicker .ui-datepicker-next {
position:absolute; top: 2px; width: 1.8em; height: 1.8em; }
.ui-datepicker .ui-datepicker-prev-hover, .ui-datepicker .ui-datepicker-next-hover {
top: 1px; }
.ui-datepicker .ui-datepicker-prev { left:2px; }
.ui-datepicker .ui-datepicker-next { right:2px; }
.ui-datepicker .ui-datepicker-prev-hover { left:1px; }
.ui-datepicker .ui-datepicker-next-hover { right:1px; }
.ui-datepicker .ui-datepicker-prev span, .ui-datepicker .ui-datepicker-next span {
display: block; position: absolute; left: 50%; margin-left: -8px; top: 50%;
margin-top: -8px; }
.ui-datepicker .ui-datepicker-title { margin: 0 2.3em; line-height: 1.8em;
text-align: center; }
.ui-datepicker .ui-datepicker-title select { float:left; font-size:1em;
margin:1px 0; }
.ui-datepicker select.ui-datepicker-month-year {width: 100%;}
.ui-datepicker select.ui-datepicker-month,
.ui-datepicker select.ui-datepicker-year { width: 49%;}
.ui-datepicker .ui-datepicker-title select.ui-datepicker-year { float: right; }
.ui-datepicker table {width: 100%; font-size: .9em; border-collapse: collapse;
margin:0 0 .4em; }
.ui-datepicker th { padding: .7em .3em; text-align: center; font-weight: bold;
border: 0; }
.ui-datepicker td { border: 0; padding: 1px; }
.ui-datepicker td span, .ui-datepicker td a { display: block; padding: .2em;
text-align: right; text-decoration: none; }
.ui-datepicker .ui-datepicker-buttonpane { background-image: none; margin: .7em
0 0 0; padding:0 .2em; border-left: 0; border-right: 0; border-bottom: 0; }
.ui-datepicker .ui-datepicker-buttonpane button { float: right; margin: .5em .2em
.4em; cursor: pointer; padding: .2em .6em .3em .6em; width:auto; overflow:visible; }
.ui-datepicker .ui-datepicker-buttonpane button.ui-datepicker-current { float:left; }
...

This is just a subset of the datepicker’s style rules; to view all, in the theme stylesheet
find the style block that starts with ui-datepicker.

Returning to our travel application, let’s write a few override rules to make the date-
picker’s header appear like our design:

1. First we’ll remove the padding that separates the header from the datepicker’s outer
container:

#travel .ui-datepicker { padding: 0; }

2. Like the tab navigation bar, we want to flatten the bottom and remove its top and
side borders:

368 | Chapter 15: jQuery UI Theming

#travel .ui-datepicker-header {
 border-top-width: 0;
 border-left-width: 0;
 border-right-width: 0;
 -moz-border-radius-bottomleft: 0;
 -webkit-border-bottom-left-radius: 0;
 -moz-border-radius-bottomright: 0;
 -webkit-border-bottom-right-radius: 0;
}

3. Finally, we’ll remove the border and background image from the next and previous
navigation arrows on hover:

#travel .ui-datepicker-prev-hover,
#travel .ui-datepicker-next-hover {
 border-width: 0;
 background-image: none;
}

With the override styles applied, our working travel application now accurately
matches the final design (Figure 15-15).

Figure 15-15. Our final design, with both standard ThemeRoller and override styles applied

15.2 Overriding jQuery UI Layout and Theme Styles | 369

Discussion
Consider whether you’d like to apply override rules to all widgets in your project or
whether you only want to override theme styles for a subset of widgets. If there’s even
a small chance that you may want to present the widget in different ways, apply override
styles by scoping them to a container element’s class or ID so that you don’t alter the
default formatting of the widget.

Here are some editing tips/reminders:

• If you want to remove the bottom border on a widget header, use border-bottom-
width: 0; instead of border-bottom:0;. The former will retain the border style and
color in the event you want it back.

• For variation in stacked elements that have the same class, you might disable just
the background image in one, letting the difference in background color show
through.

• If you need to change the color of a particular portion of a widget, design the theme
to accommodate that change instead of hard-coding a color into your stylesheet.

• If you need to remove a border but would like to keep it there for structural layout,
you can set it to transparent. To do this in an IE-safe way, set the border style to
dashed.

• Use em units whenever possible for structural dimensions such as padding and
margins, and more importantly for font sizes. Write styles assuming 1em is the
standard widget size, and try not to dip below .8em to keep text legible.

15.3 Applying a Theme to Non-jQuery UI Components
Problem
Other page components—like content boxes, buttons, and toolbars—are sitting next
to jQuery UI widgets and have similar types of interactions and behaviors, but their
designs don’t match.

Solution
You can assign Framework classes to non-jQuery UI elements to apply the same theme
as ThemeRoller-styled elements. (As a bonus, those elements will automatically update
when you apply an updated ThemeRoller theme.)

370 | Chapter 15: jQuery UI Theming

The following recipe makes the following assumptions:

• You have a basic knowledge of how CSS works and, specifically,
how styles cascade, take precedence, and can be scoped using se-
lector classes, IDs, or elements. (For our recommended resources,
please refer to the Appendix at the end of this chapter.)

• You’re already familiar with how to create and edit a theme using
ThemeRoller. (If not, review Recipe 15.1, which describes in detail
how to create a theme and apply it to your pages.)

In the previous two recipes we used ThemeRoller to create and download a theme and
then wrote a few CSS rules to override default theme styles and make it more closely
match our finished design. Now we’ll take it another step further and apply Framework
classes to elements in our project so that they coordinate with the jQuery UI widgets
and the theme we created.

Step 1: Review available Framework classes to identify those you can apply to your components

Framework classes are part of the jQuery UI theme stylesheet you download when you
create a theme in ThemeRoller. They’re named according to their purpose and apply
theme styles like background colors and textures, border and font colors, rounded
corners, and icons. Framework classes are built into jQuery UI widgets, but they may
also be applied to any other elements—like custom widgets you’ve developed or
extended from a third party—to achieve a consistent look and feel across your site or
application.

The following is an overview of the classes that make up the framework, the styles
applied by each, and general rules for referencing them in your own code.

Unless noted otherwise, all styles set by Framework classes are inherited
by child elements, including any text, link, and icon styles.

Layout helper classes hide content or fix common structural issues, like completely
wrapping a container around floated child elements:

.ui-helper-hidden
Applies display: none. Content hidden this way may not be accessible to screen
readers.

.ui-helper-hidden-accessible
Positions an element off the page so that it’s not visible but is still accessible to
screen readers.

15.3 Applying a Theme to Non-jQuery UI Components | 371

.ui-helper-reset
Removes inherited padding, margin, border, outline, text decoration, and list-
style; sets line-height to 1.3 and font-size to 100 percent.

.ui-helper-clearfix
Forces nonfloated container elements to completely wrap around floated child
elements.

Widget container classes should only be applied to the elements for which they’re
named because their child links will inherit styles from them:

.ui-widget
Applies the theme’s font family and size on the entire widget and explicitly sets the
same family and 1em font size to child form elements to force inheritance.

.ui-widget-header
Applies bold font.

.ui-widget-content
Applies border color, background color and image, and text color.

Interaction states style clickable elements—like buttons, accordion headers, and tabs—
to provide the appropriate state feedback as the user interacts with them; each class
applies border color, background color and image, and text color. The -hover,
-focus, and -active classes are intended to replace their CSS pseudoclass counterparts
(:hover, :active, :focus) and must be assigned to an element with client-side scripting.
State classes were designed this way to avoid style conflicts and added selector com-
plexity that occurs when pseudoclasses are built into the CSS. (If pseudoclasses are
necessary for your project, you can add them to your override stylesheet as described
in Recipe 15.2.)

• .ui-state-default

• .ui-state-hover

• .ui-state-focus

• .ui-state-active

Interaction cues style content to convey feedback in the form of highlight or error mes-
saging, disabled form elements, or visual hierarchy. All apply border color, background
color and image, and text color:

.ui-state-highlight
Assign this class to temporarily highlight a component.

.ui-state-error
Assign this class to any components that contain error messaging.

.ui-state-error-text
Applies only the “error” text and icon colors without the background.

372 | Chapter 15: jQuery UI Theming

.ui-state-disabled
Styles a form element to appear disabled using low opacity and therefore works
alongside other classes used to style the element. The element is still usable when
this class is applied; to disable functionality, use the disabled form element
attribute.

.ui-priority-primary
Assign this class to a button when its action takes priority over another (i.e., Save
over Cancel). Applies bold text.

.ui-priority-secondary
Assign this class to a button when its action is secondary to another (i.e., Cancel).
Applies normal font weight and reduced opacity.

Icon classes provide additional feedback in the form of directional arrows and infor-
mational symbols, like an x or a trash can to mark a button that deletes. An icon is
applied to an element with two classes:

.ui-icon
Base class that sets the element’s dimensions to a 16-pixel square, hides any text,
and sets the ThemeRoller-generated icon sprite image as a background.

.ui-icon-[type]
Where “type” is a descriptor for the icon graphic that will be displayed. Type can
be a single word (ui-icon-document, ui-icon-print) or a combination of words,
numbers, and shorthand; for example, .ui-icon-carat-1-n will display a single
caret symbol that points north, and .ui-icon-arrow-2-e-w will display a double
arrow icon that points east-west.

Because the ui-icon base class affects an element’s dimension and hides
all inner text, it’s good practice to assign icons to their own elements,
like tags, so that the styles don’t adversely affect any child content
or elements. For accessibility purposes, include a brief description in the
icon’s tag; it’s hidden from the user’s view but will be available
to screen readers.

Also, each element with the .ui-icon class is assigned a sprite back-
ground image depending on the state of its parent container. For
example, an icon element within a .ui-state-default container will
display icons in the ui-state-default icon color you set in ThemeRoller.

jQuery UI provides a full suite of Framework icons (Figure 15-16). In ThemeRoller you
can preview their default and hover interaction states by hovering over an icon in the
widget example column, and you can mouse over an icon to see its class name.

15.3 Applying a Theme to Non-jQuery UI Components | 373

Figure 15-16. jQuery UI includes a full set of themed icons in a single sprite image; their interaction
states are previewable in ThemeRoller

Corner radius helper classes apply rounded corners to a subset or all corners of a con-
tainer. The last segment of the corner class name indicates where the corner will appear,
as noted here:

.ui-corner-tl
Top left

.ui-corner-tr
Top right

.ui-corner-bl
Bottom left

.ui-corner-br
Bottom right

.ui-corner-top
Both top

.ui-corner-bottom
Both bottom

.ui-corner-right
Both right

.ui-corner-left
Both left

374 | Chapter 15: jQuery UI Theming

.ui-corner-all
All four corners

Overlay and shadow classes can be used to add depth and dimension to a site or
application:

.ui-widget-overlay
Applies 100 percent width and height dimensions, background, and opacity to the
modal screen, a layer that sits between a modal dialog and the page content that
is commonly used to make page content appear temporarily disabled while the
modal is showing.

.ui-widget-shadow
Applies background, corner radius, opacity, top/left offsets to position the shadow
behind a widget, and shadow thickness (similar to border width).

Because these Framework classes apply theme styles to jQuery UI widgets and can be
used to style any component on your page, we can use them throughout an interface
to create a uniform appearance. In this recipe, we’ll review how to assign three types
of Framework classes:

• Clickable state classes, including .ui-state-default, .ui-state-hover,
and .ui-state-active

• A corner class, .ui-corner-all

• An interaction cue class for disabling a form element, .ui-state-disabled

Step 2: Apply clickable-state Framework classes

Let’s continue refining the look of our travel reservations application.

After applying a theme we created in ThemeRoller and modifying default styles with
override rules, the interface of our travel application’s flight selector is almost done:
the clickable elements in our jQuery UI widgets have a consistent appearance—by
default, the tabs and datepicker buttons are all dark gray with a glassy texture.

But our Search for Flights submit button doesn’t conform to this design and instead
looks like a standard, unstyled browser button (Figure 15-17). We want it to look more
like our polished theme style.

To make the search button look like other clickable elements in our travel application,
we’ll assign the Framework classes that set clickable state styles—.ui-state-
default, .ui-state-hover, and .ui-state-active—to the button markup and then
write a short jQuery script to apply the styles when the user interacts with the button.
We’ll also apply rounded corners with the same radius value set for the tabs and date-
picker widget.

First, let’s assign the default state class to the button so that it matches the other click-
able elements. We’ll simply write (or copy from the theme stylesheet) ui-default-
state into the button’s class attribute:

15.3 Applying a Theme to Non-jQuery UI Components | 375

<button id="search-flights" class="ui-state-default">Search for Flights</button>

Other clickable elements like our tabs have rounded corners, so we’ll add rounded
corners to all sides of the button and append ui-corner-all to the class attribute:

<button id="search-flights" class="ui-state-default ui-corner-all">Search for
Flights</button>

With these quick additions to the markup, we’ve applied our default theme style for
clickable elements to the search button and also made it “themeable”—later if we de-
cide to create and apply a new theme to our travel application widget, the search button
will pick up the default clickable and corner styles from the new stylesheet.

Finally, let’s apply the hover and mousedown (active) states to provide visual feedback
to users when they’re interacting with the button (Figure 15-18).

Figure 15-18. Three Framework classes are used to assign clickable states

Figure 15-17. Our interface is nearly complete, except for the unstyled Search for Flights button

376 | Chapter 15: jQuery UI Theming

To update the button’s appearance on hover and mousedown, we’ll write a small
jQuery script. Since we’ve already downloaded and included the latest version of the
jQuery core library in our page and have already initialized the widget plugins on DOM
ready, we’ll append a function to the DOM ready block that toggles the state classes
assigned to our search button. As noted in the following script block, the hover event
contains two functions—the first removes the default state class and adds the hover
state on mouseover, and the second reverses these class assignments on mouseout—
and the mousedown event replaces the default and hover state classes with the active class:

$(function(){
 // initialize tabs and datepickers
 $('#travel').tabs();
 $('#departure-date-picker').datepicker({altField: '#departure-date', altFormat:
'MM d, yy'});
 $('#arrival-date-picker').datepicker({altField: '#arrival-date', altFormat: 'MM
d, yy'});

 // search button hover & active states
 $('#search-flights')
 .hover(
 function(){ $(this).removeClass('ui-state-default').addClass('ui-state-
hover'); },
 function(){ $(this).removeClass('ui-state-hover').addClass('ui-state-
default'); }
)
 .mousedown(
 function(){ $(this).removeClass('ui-state-default, ui-state-
hover').addClass('ui-state-active'); }
);
});

Why write a script to update button states when CSS pseudoclasses
(:hover, :active, :focus) do the same thing? We weighed this question
when designing the jQuery UI CSS and decided against using pseudo-
classes for a few key reasons:

• They introduce a degree of complexity to the stylesheet that made
it nearly impossible to keep it lean, and including them required
that we account for every possible scenario where these states may
clash.

• They also add CSS bloat and would have significantly increased the
size of the stylesheet.

• Some browsers, like older but still popular versions of Internet Ex-
plorer, only support pseudoclasses on link elements (anchor tags),
so we had to create classes for all clickable states anyway.

Ultimately, our button will look like the one in Figure 15-19.

15.3 Applying a Theme to Non-jQuery UI Components | 377

Figure 15-19. Our final design with theme classes applied to the Search button

Now that the button is styled to match our application, we can conditionally add an
interaction cue class, ui-state-disabled, to provide visual feedback when the button
is disabled (see Figure 15-20). For example, let’s assume all fields in our flight reserva-
tion form are required for submission. In this case, the search button should appear
disabled until the user enters a valid entry for every field; when the form is complete,
we’ll enable the button for submission.

Figure 15-20. Add the ui-state-disabled state to make a form element appear disabled

To apply a disabled appearance to our search button, we’ll append the Framework
class ui-state-disabled to our default button. (Both classes are necessary to create the
final appearance because the disabled state styles simply reduce the default button’s
opacity.)

378 | Chapter 15: jQuery UI Theming

<button id="search-flights" class="ui-state-default ui-state-disabled ui-corner-
all">Search for Flights</button>

Applying the disabled state class only changes the appearance of the button and does
not affect its functionality; it’s still capable of accepting user input to submit the form.
To ensure that the button is actually disabled, be sure to add the disabled attribute and
value to the button markup:

<button id="search-flights" class="ui-state-default ui-state-disabled ui-corner-all"
disabled="disabled">Search for Flights</button>

Discussion
Framework classes are designed to be reused throughout an application, and as such
they provide developers with a ready set of classes for styling related components in an
application, like our travel application’s Search for Flights button, or even your own
widgets. Because Framework classes are named according to their purpose, applying
them to component parts of a custom widget is fairly intuitive:

• Clickable state classes can be added to buttons, links, or other elements that require
a hover or active state.

• Corner classes can be applied to any element with block properties.

• Layout helpers can be used throughout the layout structure for fixing float con-
tainers or toggling content visibility.

• Interaction cue classes can be assigned to elements that must convey visual priority
or error messaging.

Adding Framework classes to non-jQuery UI elements also makes them themeable; if
you decide to edit and download an updated theme using ThemeRoller, the new theme
will automatically also apply your styles to those elements.

15.4 Referencing Multiple Themes on a Single Page
Problem
More than one theme must be applied to your application and appear on a single page.
For example, your jQuery UI tabs must be styled according to a primary theme, and
widgets within the tab panels must conform to a different theme.

Solution
Create a second theme using ThemeRoller, and apply it selectively to widgets or com-
ponents in your application by associating the new theme with a class, an ID, or other
scoping selector during the download process.

15.4 Referencing Multiple Themes on a Single Page | 379

The following recipe makes the following assumptions:

• You have a basic knowledge of how CSS works and, specifically,
how styles cascade, take precedence, and can be scoped using se-
lector classes, IDs, or elements. (For our recommended resources,
please refer to the Appendix at the end of this chapter.)

• You’re already familiar with how to create and edit a theme using
ThemeRoller. (If not, review Recipe 15.1, which describes in detail
how to create a theme and apply it to your pages.)

jQuery UI themes are intended to create a consistent look and feel in jQuery UI widgets
and other interface components across an entire application, but sometimes the design
is more complex, and a different look and feel must be applied to certain widgets de-
pending on where they appear in the application.

In the case of our travel application, let’s say the designer reviews our final design and
feels that using dark gray on all clickable elements makes it difficult to distinguish the
reservation type tabs from the form fields within the set. He decides the top tabs should
retain their current style, but all interactive components inside the tabs—including the
datepickers and search button—should be styled differently and have a yellow default
state. Figure 15-21 shows our current and our new design.

Figure 15-21. Our original theme (A) sets the clickable default state to gray for all interactive elements;
the new design (B) keeps the top tabs gray but shifts all interactive components inside the tabs to yellow

There are a couple of ways to create style exceptions for the tab contents. As described
in Recipe 15.2, we could write and reference override rules to modify the default theme
styles for the datepicker and button. To do that, we’d have to use a design editing tool

380 | Chapter 15: jQuery UI Theming

like Adobe Photoshop to figure out all of the new color hexadecimal values and then
produce new yellow background images.

Or, we could just create a new theme in ThemeRoller that matches our secondary theme
(in this case, yellow clickable elements), scope it to our tab content area specifically,
and then reference it after our original theme stylesheet. The jQuery UI download
builder provides a simple interface for scoping a theme in this way: the Advanced
Theme Settings area on the Download page can be set to specify a scoping selector—
a class, an ID, or other hierarchical CSS selector—that allows you to pinpoint exactly
which components will be styled with the additional theme.

Returning to our travel reservations application, at this point we’ve completed the steps
described in Recipes 15.1 through 15.3:

• Created and downloaded a theme and referenced it in our project (Recipe 15.1)

• Wrote and appended override rules to modify a few of the theme’s default styles
(Recipe 15.2)

• Added a few Framework classes to our search button to apply our theme styles
(Recipe 15.3)

Now we’ll review how to scope a second theme and apply it to our project.

Step 1. Create another theme using ThemeRoller

Open the jQuery UI website at http://jqueryui.com and choose Themes from the top
navigation bar, or go directly to http://themeroller.com.

We created the original theme to style all of the widgets used in our design. However,
in this case we only want to style the widgets within the tab content panel; we can
disregard the top navigation tabs for now.

As we did in Recipe 15.1, we’ll start with the Sunny theme, since it closely matches the
yellow clickable states and header styles in our new design by default (Figure 15-22).

You can use an existing custom theme as a starting point without having
to start from scratch. To do so, open the theme stylesheet, search for
the comment that starts with “To view and modify this theme, visit
http://jqueryui.com/themeroller/...” and copy and paste the theme
URL into a browser’s address bar to open ThemeRoller with that
theme’s settings preloaded.

The Sunny theme is very close to our new target design, with a couple of exceptions:
the header that sits above the datepicker is gray when ours is yellow, and the content
area and active state border color is a darker brown than is specified in our design.
We’ll return to the Roll Your Own tab to tweak a few settings:

15.4 Referencing Multiple Themes on a Single Page | 381

http://jqueryui.com
http://themeroller.com

• Change the header background from gray to yellow: The background color and
border of our additional theme needs to match that of our “Clickable: default
state.”

1. Open the Header/Toolbar section.

2. In the background color field enter #FECE2F; we don’t need to make any
changes to the texture or opacity settings.

3. The white text is now barely visible against the yellow background, so we’ll
darken it to match the gray text elsewhere in our application; enter the value
#333333.

4. Likewise, the icons in the datepicker header need to contrast more with the
background, so we’ll make them medium brown; enter #A27406.

5. Finally, change the border color to #D19405.

• Change the content and active state borders to light brown: Content borders appear
around accordion sections and define the tabs, dialog, slider, datepicker, and pro-
gress bar outer containers.

1. Open the Content section.

2. Update the border color to match that of the header border, #D19405.

3. Hit the Tab or Enter key, or click elsewhere on the page, to preview the changes
in the widgets on the right.

Figure 15-22. The new target design with yellow clickable states and headers for tab contents closely
matches the Sunny gallery theme

382 | Chapter 15: jQuery UI Theming

Step 2. Scope the new theme and download it

When you’re finished editing the Sunny theme, click the “Download theme” button in
the toolbar’s Roll Your Own tab, which navigates you to the jQuery UI download
builder.

Before we edit the download builder settings, we need to determine which scoping
selector we’ll use to apply our new theme to the travel application’s content panels.
We want to ensure that we only affect the tab contents and don’t alter the original
theme we applied to our top navigation tabs.

A scoping selector is a class, an ID, or an HTML tag that specifically identifies the parent
container of the elements we want to style. It’s best to choose a scoping selector with
the most limited range so that you don’t inadvertently scope styles to elements that
should assume the base theme styles. In our travel reservations application, the scoping
selector should identify the container that encloses the tabs’ content and does not also
enclose the tabs’ navigation panel.

When we look at the generated markup in our application, we see that each content
panel is assigned the class ui-tabs-panel:

<div class="ui-tabs ui-widget ui-widget-content ui-corner-all" id="travel">
 <ul class="ui-tabs-nav ui-helper-reset ui-helper-clearfix ui-widget-header ui-
corner-all">
 <li class="ui-state-default ui-corner-top ui-tabs-selected ui-state-active">
Book a Flight
 <li class="ui-state-default ui-corner-top"><a href="#travel-car" id="tab-
car">Rent a Car
 <li class="ui-state-default ui-corner-top"><a href="#travel-package"
id="tab-package">Package Deals

 <div id="travel-flight" class="ui-helper-clearfix ui-tabs-panel
ui-widget-content ui-corner-bottom"></div><!-- /flight -->
 <div id="travel-car" class="ui-tabs-panel ui-widget-content ui-corner-bottom
ui-tabs-hide"></div><!-- /car -->
 <div id="travel-package" class="ui-tabs-panel ui-widget-content
ui-corner-bottom ui-tabs-hide"></div><!-- /package -->
</div><!-- /travel -->

Because the content panel markup appears after and is separate from that of the tabs’
navigation, we can safely scope our new styles to the ui-tabs-panel class without
affecting the styles applied to the top tabs.

With our scoping selector identified, we can return to the jQuery UI download builder.
In the right column under Theme, we’ll specify how this new theme should be scoped
within our application. Click Advanced Theme Settings to expand this section; you’ll
see two input fields (Figure 15-23):

• CSS Scope accepts the scoping selector (class, ID, or HTML tag). When compiling
the theme stylesheet, the download builder prefixes every style rule with this value,
which applies all style rules only to elements within the specified container.

15.4 Referencing Multiple Themes on a Single Page | 383

For our travel reservations application, we’ll enter the class we chose to scope our
styles, .ui-tabs-panel. Be sure to include the preceding period (.) or, if specifying
an ID, the hash (#)—these marks are necessary for the stylesheet to render
properly.

When this field is left blank, the theme is applied globally across all
widgets in your application and is not scoped to any particular
container.

• Theme Folder Name accepts a folder name for the new theme that’s included in
the downloaded ZIP; this folder contains the theme stylesheet and image files. This
value defaults to the name of the selected theme, which in our case should be
“custom-theme” since we’ve arrived at the download builder after designing a cus-
tom theme in ThemeRoller.

When you type a CSS scope in the first field, the download builder suggests a folder
name based on that scope. This is meant to be helpful, but you may want to override
the suggestion with something more meaningful to your project’s directory
structure.

For the travel reservations application, we’ll write our own folder name and use
“tab-content-theme” to better describe the folder contents.

Now that we’ve set up the CSS scope and folder name, we’ll select all jQuery UI widgets
that will use the new scoped theme (Figure 15-24).

Figure 15-23. The jQuery UI download builder’s Advanced Theme Settings expands to provide fields
for CSS scope and the new theme folder name

384 | Chapter 15: jQuery UI Theming

Figure 15-24. Download a scoped theme by filling in Advanced Theme Settings and selecting any
widgets that will use the scoped theme on the jQuery UI Download page

Getting New Widgets
You’ll need to download any widgets that will use the scoped theme so that the ap-
propriate styles are included in the scoped CSS. JavaScript for these widgets will auto-
matically be included in the download as well. However, if you need only the scoped
theme, you can discard the JavaScript, since it will likely be a duplicate of what you
already have.

If you reach this step and realize that you need to download additional widgets for your
project that you had not included in your original download (for example, you need to
add a progress bar), we strongly advise that you not download new widgets with a
scoped theme. Merging JS files is just too complicated.

Instead, to add new widgets to the project, we recommend that you redo the download
process wholesale: reopen the original theme in ThemeRoller, and then download all
jQuery UI components used in the project. That way, you can simply overwrite the
original theme stylesheet and your jQuery UI JavaScript file with files that cover all

15.4 Referencing Multiple Themes on a Single Page | 385

widgets in your application. To do this, simply open the original theme stylesheet,
search for the comment that starts with “To view and modify this theme, visit http://
jqueryui.com/themeroller/...,” copy and paste the theme URL into a browser’s address
bar to open ThemeRoller with that theme’s settings preloaded, and then click “Down-
load theme” to select additional widgets.

Select which version of jQuery UI you’d like to use (the latest stable version is selected
by default), click Download, and save the ZIP file locally (the file will be named like
jquery-ui-1.7.1.custom.zip).

Step 3. Merge files into your project directory

The download folder contains the CSS directory (css) with your scoped theme folder;
the widget JavaScript (js), which may be a duplicate of what you’re already using (to
stay safe, double check before overwriting any files); and the development bundle
(development-bundle), which contains individual CSS files used to create the compiled
version found in the css folder, open source license text, and related resources necessary
for advanced development. The order of the folders and files may vary depending on
your operating system (Figure 15-25 shows the folder opened on Mac OS X).

Figure 15-25. A snapshot of the jQuery download folder structure when downloading a scoped theme

Now we’ll copy and paste the tab-content-theme folder into the styles directory for our
travel reservations project.

It’s important to maintain the established directory structure within the
theme folder so that the icon images are referenced properly by the
theme classes. If you do change the theme directory structure, you will
likely have to replicate those changes if later you decide to upgrade to a
newer version of the jQuery UI scripts and CSS.

The new theme folder will sit alongside the original theme folder in the styles directory,
as shown in Figure 15-26.

386 | Chapter 15: jQuery UI Theming

Figure 15-26. Scoped theme folders are appended to the styles directory

Step 4. Reference the scoped theme stylesheet in your project

We’ll reference our scoped stylesheet after the original theme stylesheet and before all
jQuery UI scripts. The order in which theme stylesheets are referenced on the page is
not important:

<!doctype html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Travel widget | Book a Flight, Rent a Car, or Find Package Deals</title>

 <!-- jQuery UI styles -->
 <link rel="stylesheet" type="text/css" href="css/custom-theme/jquery-ui-
1.7.1.custom.css" />
 <link rel="stylesheet" type="text/css" href="css/tab-content-theme/jquery-ui-
1.7.1.custom.css" />

 <!-- jQuery core & UI scripts -->
 <script type="text/javascript" src="js/jquery-1.3.2.min.js"></script>
 <script type="text/javascript" src="js/jquery-ui-1.7.1.custom.min.js"></script>

 <script type="text/javascript">
 $(function(){
 $('#travel').tabs();
 $("#departure-date-picker").datepicker({altField: '#departure-date',
altFormat: 'MM d, yy'});
 $("#arrival-date-picker").datepicker({altField: '#arrival-date', altFormat:
'MM d, yy'});
 });
 </script>
</head>
...

15.4 Referencing Multiple Themes on a Single Page | 387

When the theme stylesheet links are in place, we’ll preview the page in a browser to
confirm that the styles are being applied correctly. Because we scoped the new theme
to the tab content panel, the styles are only applied to the content’s widgets and not to
the tabs above, as illustrated in Figure 15-27.

For another example of this technique, visit this article: http://www.fil
amentgroup.com/lab/using_multiple_jquery_ui_themes_on_a_single
_page/.

Figure 15-27. Final application with scoped theme applied

15.5 Appendix: Additional CSS Resources
To get the most out of the jQuery UI CSS Framework and ThemeRoller, it helps to
have a basic knowledge of how CSS works and, specifically, how styles cascade, take
precedence, and can be scoped using selector classes, IDs, or elements.

388 | Chapter 15: jQuery UI Theming

http://www.filamentgroup.com/lab/using_multiple_jquery_ui_themes_on_a_single_page/
http://www.filamentgroup.com/lab/using_multiple_jquery_ui_themes_on_a_single_page/
http://www.filamentgroup.com/lab/using_multiple_jquery_ui_themes_on_a_single_page/

We recommend the following books and online resources for a primer on these
concepts:

CSS Basics Tutorial
http://www.cssbasics.com/

CSS Cheat Sheet
http://lesliefranke.com/files/reference/csscheatsheet.html

Designing with Web Standards
http://www.zeldman.com/dwws/

Web Standards Solutions
http://www.friendsofed.com/book.html?isbn=1590593812

Eric Meyer on CSS
http://www.ericmeyeroncss.com/

15.5 Appendix: Additional CSS Resources | 389

http://www.cssbasics.com/
http://lesliefranke.com/files/reference/csscheatsheet.html
http://www.zeldman.com/dwws/
http://www.friendsofed.com/book.html?isbn=1590593812
http://www.ericmeyeroncss.com/

CHAPTER 16

jQuery, Ajax, Data Formats:
HTML, XML, JSON, JSONP

Jonathan Sharp

16.0 Introduction
Web developers work with a number of data formats and protocols in transferring
information between browsers and servers. This chapter provides a number of recipes
for handling and working with some of the most common data formats, Ajax
techniques, and jQuery.

16.1 jQuery and Ajax
Problem
You want to make a request to the server for some additional data without leaving the
page the visitor is currently on.

Solution
Here’s a simple Ajax request:

(function($) {
 $(document).ready(function() {
 $('#update').click(function() {
 $.ajax({
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html',
 success: function(html, textStatus) {
 $('body').append(html);
 },
 error: function(xhr, textStatus, errorThrown) {
 alert('An error occurred! ' + (errorThrown ? errorThrown :

391

xhr.status);
 }
 });
 });
 });
})(jQuery);

Discussion
At the core of jQuery’s Ajax architecture is the jQuery.ajax() method. This provides
the basis of all browsers to server requests and responses. So, let’s look at this in a little
more detail. To initiate a request to the server, a settings object that contains parameters
for the request is passed to the $.ajax method. A vast number of options are available,
with the most common options of a request being type, url, complete, dataType,
error, and success:

var options = {
 type: 'GET'
};

The first option that needs to be addressed when starting an Ajax request is the type of
HTTP request you’re going to make to the server, which in the majority of cases will
be either a GET or POST type:

var options = {
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html'
};

Next we’ll look at the URL and dataType options. URL is fairly self-explanatory with the
following interactions worth noting. When setting the cache option to false, jQuery
will append a get variable of _=<random number> (for example /server-ajax-gateway?
_=6273551235126), which is used to prevent the browser, proxies, and servers from
sending a cached response. Finally, the dataType option specifies the data format that
is the expected response from the server. For example, if you’re expecting the server to
return XML, then a value of xml would be appropriate:

var options = {
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html',
 error: function(xhr, textStatus, errorThrown) {
 alert('An error occurred! ' + errorThrown);
 },
 success: function(data, textStatus) {
 $('body').append(data);
 }
};

The next two options that we define are two callback methods, one called error and
the other called success. They function as they are appropriately titled, with error being
called when there is an error with the request and success being called with a successful

392 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

response (determined if a server response type of 200 is returned). The other common
option mentioned is the complete option, which defines a callback to execute upon after
either success or error of the response:

var options = {
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html',
 complete: function(xhr, textStatus) {
 // Code to process response
 }
};

Once the settings have been defined, we can go ahead and execute our request:

var options = {
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html',
 complete: function(xhr, textStatus) {
 // Code to process response
 }
};
$.ajax(options);

We can also set our options inline:

$.ajax({
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html',
 complete: function(xhr, textStatus) {
 // Code to process response
 }
});

Our final solution requests the file hello-ajax.html and appends the contents (html)
to the <body> element upon the return of a successful request. If the request fails, the
error method is triggered instead, alerting the user with a message:

(function($) {
 $(document).ready(function() {
 $('#update').click(function() {
 $.ajax({
 type: 'GET',
 url: 'hello-ajax.html',
 dataType: 'html',
 success: function(html, textStatus) {
 $('body').append(html);
 },
 error: function(xhr, textStatus, errorThrown) {
 alert('An error occurred! ' + errorThrown);
 }
 });
 });

16.1 jQuery and Ajax | 393

 });
})(jQuery);

16.2 Using Ajax on Your Whole Site
Problem
You have a large web application with Ajax calls occurring throughout the code base
and need to define default settings for all requests throughout the application.

Solution
(function($) {
 $(document).ready(function() {
 $('#loadingIndicator')
 .bind('ajaxStart', function() {
 $(this).show();
 })
 .bind('ajaxComplete', function() {
 $(this).hide();
 });
 $.ajaxSetup({
 cache: true,
 dataType: 'json',
 error: function(xhr, status, error) {
 alert('An error occurred: ' + error);
 },
 timeout: 60000, // Timeout of 60 seconds
 type: 'POST',
 url: 'ajax-gateway.php'
 }); // Close $.ajaxSetup()
 }); // Close .read()
})(jQuery);

Discussion
When working with larger applications, often there is a common Ajax gateway through
which all requests are passed. Using the $.ajaxSetup() method, we can set Ajax request
default settings. This would result in an ease of Ajax requests throughout the applica-
tion such as follows:

$.ajax({
 data: {
 // My request data for the server
 },
 success: function(data) {
 // Now update the user interface
 }
});

A brief side point is that the timeout option takes its value in milliseconds (seconds ×
1,000), so a timeout of 6,000 would be six seconds. One thing to consider when setting

394 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

this value is the extent to which the Internet has grown globally. Some of your visitors
or users may be in locations that have a higher latency than you would expect for users
within your region. So, don’t set this value too low (for example five seconds). Speci-
fying a higher timeout value such as 30 or 60 seconds will allow users with higher-
latency connections (such as those using satellite) to still enjoy the benefits of your
application.

In the previous example, the request will be a POST to ajax-gateway.php. If an error
occurs, it will be handled by the error function as defined in $.ajaxSetup(). It is possible
to still override settings for a specific request as follows:

$.ajax({
 url: 'another-url.php',
 data: {
 // My request data for the server
 },
 success: function(data) {
 // Now update the user interface
 }
});

The previous request would be sent to another-url.php instead of ajax-gateway.php.
One beneficial feature of jQuery’s Ajax architecture is the global events available such
as ajaxComplete, ajaxError, ajaxSend, ajaxStart, ajaxStop, and ajaxSuccess. These
events may be set up using the .bind('event', callback) method or the short-
cut .event(callback). The following example shows the two methods for binding the
callback for the ajaxError event:

(function($) {
 $(document).ready(function() {
 $('#loadingIndicator')
 .ajaxError(function() {
 // Your code
 });
 // Or using bind()
 $('#loadingIndicator')
 .bind('ajaxError', function() {
 // Your code
 });
 });
})(jQuery);

Here is a rundown and description of the events that are available as well as the order
in which they’re triggered:

ajaxStart
Triggered at the start of an Ajax request if no other requests are in progress

ajaxSend
Triggered before each individual request is sent

ajaxSuccess or ajaxError
Triggered upon a successful or an unsuccessful request

16.2 Using Ajax on Your Whole Site | 395

ajaxComplete
Triggered every time a request is complete (regardless of whether it was a success
or had an error)

ajaxStop
Triggered if there are no additional Ajax requests in progress

In the next recipe we will build upon these events in more detail.

16.3 Using Simple Ajax with User Feedback
Problem
You need to show a status indicator to the user when Ajax requests are in progress and
hide it upon completion.

Solution
(function($) {
 $(document).ready(function() {
 $('#ajaxStatus')
 .ajaxStart(function() {
 $(this).show();
 })
 .ajaxStop(function() {
 $(this).hide();
 });

 // Start our ajax request when doAjaxButton is clicked
 $('#doAjaxButton').click(function() {
 $.ajax({
 url: 'ajax-gateway.php',
 data: { val: "Hello world" },
 dataType: 'json',
 success: function(json) {
 // Data processing code
 $('body').append('Response Value: ' + json.val);
 }
 });
 });
 });
})(jQuery);

Discussion
One of the huge benefits of jQuery’s Ajax implementation is the exposure of global
Ajax events that are triggered on all elements with each Ajax request. In the following
solution, we bind two of the events, ajaxStart and ajaxStop using the shortcut methods
to the XHTML element with the ID ajaxStatus. When the Ajax request is triggered
upon clicking #doAjaxButton, the ajaxStart event is also dispatched and calls show()

396 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

on the #ajaxStatus element. Notice that these events are triggered automatically and
are a by-product of using the $.ajax() (or other shortcut methods such as $.get()).
This provides an elegant decoupled solution for having an application-wide request
status as Ajax requests are submitted:

(function($) {
 $(document).ready(function() {
 $('#ajaxStatus')
 .ajaxStart(function() {
 $(this).show();
 })
 .ajaxStop(function() {
 $(this).hide();
 });

 // Start our ajax request when doAjaxButton is clicked
 $('#doAjaxButton').click(function() {
 $.ajax({
 url: 'ajax-gateway.php',
 data: { val : 'Hello world' },
 dataType: 'json',
 success: function(json) {
 // Data processing code
 $('body').append('Response value: ' + json.val);
 }
 });
 });
 });
})(jQuery);

Let’s look at some of the additional events and the difference between local and global
Ajax events. Local Ajax events (set up using $.ajaxSetup() or defined at the time of
$.ajax()) consist of beforeSend, success, error, and complete. These events are defined
inline and tightly coupled to each Ajax request. Global Ajax events are interleaved with
the local events but are triggered for any element that binds to them and also make use
of jQuery’s native event-handling architecture. Here’s a quick review on how to handle
local Ajax events (such as the complete event):

$.ajax({
 type: 'GET',
 url: 'ajax-gateway.php',
 dataType: 'html',
 complete: function(xhr, textStatus) {
 // Code to process response
 }
});

Now let’s examine the breakdown, order, and scope in which events are triggered on
a successful Ajax request:

• ajaxStart (global)

• beforeSend (local)

16.3 Using Simple Ajax with User Feedback | 397

• ajaxSend (global)

• success (local)

• ajaxSuccess (global)

• complete (local)

• ajaxComplete (global)

• ajaxStop (global)

For an unsuccessful Ajax request, the order of triggered events would be as follows with
success and ajaxSuccess being replaced by error and ajaxError, respectively:

• ajaxStart (global)

• beforeSend (local)

• ajaxSend (global)

• error (local)

• ajaxError (local)

• complete (local)

• ajaxComplete (global)

• ajaxStop (global)

ajaxStart and ajaxStop are two special events in the global scope. They are different
in that their behavior operates across multiple simultaneous requests. ajaxStart is trig-
gered when a request is made if no other requests are in progress. ajaxStop is triggered
upon completion of a request if there are no additional requests in progress. These two
events are only triggered once when multiple simultaneous requests are dispatched:

(function($) {
 $(document).ready(function() {
 $('#ajaxStatus')
 .ajaxStart(function() {
 $(this).show();
 })
 .ajaxStop(function() {
 $(this).hide();
 });

 // Start our Ajax request when doAjaxButton is clicked
 $('#doAjaxButton').click(function() {
 $.ajax({
 url: 'ajax-gateway.php',
 complete: function() {
 // Data processing code
 }
 });
 $.ajax({
 url: 'ajax-data.php',
 complete: function() {
 // Data-processing code

398 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

 }
 });
 });
 });
})(jQuery);

One setting that can be passed into the $.ajax() method is global, which can be set to
either true or false. By setting global to false, it’s possible to suppress the global events
from being triggered.

If you experience performance issues in your application, it may be be-
cause of the cost of event propagation if there is a significantly large
number of elements. In this case, setting global to false may give you
a performance improvement.

The beforeSend callback is a local event that allows for modifying the XMLHttpRequest
object (which is passed in as an argument) prior to the request being sent. In the fol-
lowing example, we specify a custom HTTP header for the request. It is possible to
cancel the request by returning false from the callback:

(function($) {
 $(document).ready(function() {
 // Start our ajax request when doAjaxButton is clicked
 $('#doAjaxButton').click(function() {
 $.ajax({
 url: 'ajax-gateway.php',
 beforeSend: function(xmlHttpRequest) {
 xmlHttpRequest.setRequestHeader('X-SampleHeader',
'Hello world’);
 },
 complete: function() {
 // Data processing code
 }
 });
 });
 });
})(jQuery);

Now taking all of the events if we revise our solution, we come up with the following:

(function($) {
 $(document).ready(function() {
 $('#ajaxError')
 .ajaxError(function(evt, xhr, ajaxOptions, error) {
 $(this)
 .html('Error: ' + (xhr ? xhr.status : '')
 + ' ' + (error ? error :'Unknown'))
 .show();
 })
 .ajaxSuccess(function() {
 $(this).hide();
 });

16.3 Using Simple Ajax with User Feedback | 399

 $('#ajaxStatus')
 .ajaxStart(function() {
 $(this).show();
 })
 .ajaxSend(function() {
 $(this).html('Sending request...');
 })
 .ajaxStop(function() {
 $(this).html('Request completed...');
 var t = this;
 setTimeout(function() {
 $(t).hide();
 }, 1500);
 });

 // Start our ajax request when doAjaxButton is clicked
 $('#doAjaxButton').click(function() {
 $.ajax({
 url: 'ajax-gateway.php',
 complete: function() {
 // Data processing code
 }
 });
 });
 });
})(jQuery);

16.4 Using Ajax Shortcuts and Data Types
Problem
You need to make a GET Ajax request to the server and place the contents of the
resulting HTML in a <div> with an ID of contents.

Solution
(function($) {
 $(document).ready(function() {
 $('#contents').load('hello-world.html');
});
})(jQuery);

Discussion
This recipe differs slightly from others in that we’ll survey a variety of the functions and
shortcuts provided by jQuery in an effort to clearly present their differences.

jQuery provides a number of shortcuts for making Ajax requests. Based upon
the previous recipes covering Ajax, the following shortcuts exist: .load(), $.get(),
$.getJSON(), $.getScript(), and $.post(). But first, let’s review our solution:

$('#contents').load('hello-world.html');

400 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

The .load(url) method is making a GET Ajax request to hello-world.html and placing
the contents of that result into the element #contents. Two optional parameters to
the .load() method are data and callback. The data parameter can be either a map (or
JavaScript object) or as of jQuery 1.3 a string. The following example is passing in the
variable hello with the value world. (This is the same as the following URL: hello-
world.html?hello=world.)

$('#contents').load('hello-world.html', { hello: 'world' });

The third optional parameter is a callback function that is called when the request
completes (either on success or error). In the following example, an alert message is
being triggered upon the completion of the request:

$('#contents').load('hello-world.html', { hello: 'world' }, function() {
 alert('Request completed!');
});

The next two methods we will look at are $.get() and $.post(). Both methods accept
the same arguments, with the $.get() method sending a GET HTTP request and the
$.post() method sending a POST HTTP request. We’ll look at a sample using the
$.get() request. The $.get() method accepts url, data, callback, and type parameters.
The first three parameters function the same as with the previous load() method, so
we’ll only cover the final type parameter:

$.get(
 'hello-world.html',
 { hello: 'world' },
 function(data) {
 alert('Request completed!');
 },
 'html'
);

The type parameter can accept one of the following: xml, html, script, json, jsonp, or
text. These type values determine how the response text from the Ajax request is pro-
cessed prior to being passed to the callback function. In the previous example, since
we specified a type of html, the data argument of our callback will be in DOM object
form. Specifying xml as the type will result in an xml DOM object being passed in. If
you specify script as the type, the resulting data returned by the server will be executed
prior to the callback method being triggered. Both json and jsonp formats result in a
JavaScript object being passed to your callback method, with the difference of jsonp
being that jQuery will pass in a method name in the request and map that callback
method to the anonymous function defined with the request. This allows for cross-
domain requests. Finally, the text format is just as the name suggests: plain text that
is passed in as a string to your callback method.

16.4 Using Ajax Shortcuts and Data Types | 401

We’ll now look at the final two shortcuts: $.getJSON() and $.getScript(). The
$.getJSON() method accepts url, data, and callback as arguments. $.getJSON() is es-
sentially a combination of the $.get() method with appropriate parameters being set
for JSON or JSONP. The following example would make a JSONP request to Flickr and
request photos from the public timeline:

$.getJSON(
 'http://www.flickr.com/services/feeds/photos_public.gne?
format=json&jsoncallback=?’,
 function(json) {
 }
);

Since this request is cross-domain, jQuery will automatically treat the request as a
JSONP and fill in the appropriate callback function name. This also means that jQuery
will initiate the request by inserting a <script> tag into the document instead of using
the XMLHttpRequest object. Flickr’s API allows for the callback function name to be
specified by setting the jsoncallback get variable. You’ll notice the jsoncallback=?
portion of the URL. jQuery will intelligently replace the ? with the appropriate function
name automatically. By default jQuery will append a callback= variable but allows for
easily modifying this, as demonstrated. The callback replacement works on both GET
and POST request URLs but will not work with parameters passed in the data object.
See Recipes 16.7 and 16.8 for working with JSON and Recipe 16.9 for a full JSONP
implementation of our Flickr example.

$.getScript() executes a request either via an Ajax request or via dynamically inserting
a <script> tag for cross-domain support and then evaluating the returned data and
finally triggering the callback provided. In the following example, we’re adding a script
to the document and then calling one of the functions it provides in the callback:

// hello-world.js
function helloWorld(msg) {
 alert('Hello world! I have a message for you: ' + msg);
}

// hello-world.html
(function($) {
 $(function() {
 $.getScript('hello-world.js', function() {
 helloWorld('It is a beautiful day!');
 });
 });
})(jQuery);

402 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

16.5 Using HTML Fragments and jQuery
Problem
You want to take a string of HTML and convert it into a series of DOM nodes and then
insert it into the document.

Solution
(function($) {
 $(document).ready(function() {
 $('<div>Hello World</div>')
 .append('A Link')
 .appendTo('body');
 });
})(jQuery);

Discussion
Manipulating strings of HTML is one of the more common tasks when using jQuery.
At the heart of jQuery is an elegant interface for translating a string of markup into its
DOM representation. Instead of passing in a selector, we can simply pass in a string of
HTML. (The following does not work for XML; see Recipe 16.6 for converting a string
of XML to a DOM.)

$('<div>Hello World</div>');

At this point our HTML has been converted into a DOM representation and is ready
for manipulation with jQuery. We can operate on this fragment using any of the jQuery
methods:

$('<div>Hello World</div>')
 .append('A Link')
 .appendTo('body');

One caveat worth noting is that prior to the HTML fragment being ap-
pended to the document, some visual attributes such as width and
height may not be available. So in the following example, call-
ing .width() will return a value of 0.

$('<div>Hello World</div>').width();
// Returns '0'

16.5 Using HTML Fragments and jQuery | 403

16.6 Converting XML to DOM
Problem
You need to convert a string of XML to a DOM object for use with jQuery.

Solution
<h1 id="title"></h1>

(function($) {
 $(document).ready(function() {
 var xml = '<myxml><title>Hello world!</title></myxml>';
 var title = $.xmlDOM(xml).find('myxml > title').text();
 $('#title').html(title);
 });
})(jQuery);

Discussion
A frequent question appearing on the jQuery mailing list is how to convert a string of
XML to its DOM representation that jQuery is able to operate on. When making an
Ajax request with a response type of xml, the browser will automatically parse the re-
turned XML text into a DOM object.

So, what would you do if you had a string of XML that you needed to process with
jQuery? The xmlDOM plugin provides native cross-browser parsing of a string of XML
and returns a jQuery-wrapped DOM object. This allows you to convert and access the
XML in one step:

(function($) {
 $(document).ready(function() {
 var xml = '<myxml><title>Hello world!</title></myxml>';
 var title = $.xmlDOM(xml).find('myxml > title').text();
 $('#title').html(title);
 });
})(jQuery);

Another common practice is passing in the DOM object as the second argument to
jQuery (the context) as follows:

(function($) {
 $(document).ready(function() {
 var $xml = $.xmlDOM('<myxml><title>Hello world!</title></myxml>');
 var title = $('myxml > title', $xml).text();
 $('#title').html(title);
 });
})(jQuery);

This allows you to run your jQuery selection against the context object passed in;
otherwise, jQuery runs the query against the document object.

404 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

The xmlDOM plugin by the author may be downloaded from http://jquery-cookbook
.com/go/plugin-xmldom.

16.7 Creating JSON
Problem
You have a JavaScript object that contains data that needs to be serialized for easier
storage and retrieval.

Solution
(function($) {
 $(document).ready(function() {
 var messageObject = { title: 'Hello World!', body: 'It\'s great to be
alive!' };
 var serializedJSON = JSON.stringify(messageObject);
 });
})(jQuery);

Discussion
JavaScript Object Notation (JSON) is a common data format used to exchange data
between the browser and the server. It is lightweight in nature and is easy to use and
parse in JavaScript. Let’s first look at a simple object:

var messageObject = { title: 'Hello World!', body: 'It\'s great to be alive!' };

In this example, we have a simple object with two attributes, title and body. Being able
to store a serialized version of the object is quite simple. The serialized version is as
follows:

var serializedJSON = '{"title":"Hello World!","body":"It\'s great to be alive!"}';

The two common tasks when working with JSON are serialization (encoding an object
into a string representation) and deserialization (decoding a string representation into
an object literal). Currently, only a handful of browsers have native built-in JSON han-
dling (such as Firefox 3.1+ and Internet Explorer 8). Other browsers have plans to add
support because JSON is now part of the ECMA 3.1 specification. In the meantime,
there are two main approaches to take when working with JSON data. Douglas
Crockford has written a JavaScript implementation for encoding and decoding JSON,
which you can get from http://jquery-cookbook.com/go/json. Let’s serialize the previous
object utilizing the JSON library:

var serializedJSON = JSON.stringify(messageObject);

We now have a string representation that we can send to our server such as in an Ajax
request or submit in a form.

16.7 Creating JSON | 405

http://jquery-cookbook.com/go/plugin-xmldom
http://jquery-cookbook.com/go/plugin-xmldom
http://jquery-cookbook.com/go/json

16.8 Parsing JSON
Problem
You’re passed a string of JSON data and need to convert it to object format.

Solution
(function($) {
 $(document).ready(function() {
 var serializedJSON = '{"title":"Hello World!","body":"It\'s great to be
alive!"}';
 var message = JSON.parse(serializedJSON);
 });
})(jQuery);

Discussion
As discussed in the previous recipe, we’ll now look at parsing or decoding a JSON
string.

It is important to note that some of the approaches outlined here are
unsafe and may cause potential security issues. Make sure that you trust
the source of your data.

The easiest approach in consuming JSON data is to eval() the message. There are some
inherent security issues though with this approach because eval() encompasses the
entire JavaScript specification instead of simply the JSON subset. What this means is
that a malicious person could execute code embedded in the JSON string. So, we don’t
recommend this approach. Instead, let’s use Douglas Crockford’s JSON library men-
tioned in the previous recipe. (Note that his library does utilize eval() except that it
pre-processes the data to make sure the data is safe.)

var serializedJSON = '{"title":"Hello World!","body":"It\'s great to be alive!"}';
var message = JSON.parse(serializedJSON);

So, now we can work with our message object as we would any other JavaScript object:

alert("New Message!\nTitle: " + message.title + "\nBody: " + message.body);

The JSON library as well as additional JSON resources may be downloaded from http:
//jquery-cookbook.com/go/json.

406 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

http://jquery-cookbook.com/go/json
http://jquery-cookbook.com/go/json

16.9 Using jQuery and JSONP
Problem
You want to consume a list of photos from Flickr’s public photo stream and display
the first three images.

Solution
(function($) {
 $(document).ready(function() {
 var url = 'http://www.flickr.com/services/feeds/photos_public.gne?
jsoncallback=?';
 var params = { format: 'json' };
 $.getJSON(url, params, function(json) {
 if (json.items) {
 $.each(json.items, function(i, n) {
 var item = json.items[i];
 $('')
 .append('')
 .appendTo('#photos');
 // Display the first 3 photos (returning false will
 // Exit the loop
 return i < 2;
 });
 }
 });
 });
})(jQuery);

Discussion
Security is a critical issue when building a website or application and especially so with
the advent of Ajax. Web browsers have enforced a same origin policy on requests, which
means that you’re restricted to making requests to the same domain as the page’s URL
or a subdomain of the current domain. So, for example, a page served from http://
www.example.com is allowed to make Ajax requests to http://www.example.com and
http://x.www.example.com but not http://example.com or http://y.example.com. As the
semantic Web emerged and websites such as Flickr started exposing an API for other
users and services to consume, the security policy enforced by web browsers became a
hindrance. One area that has never had same origin policies was the use of the script
element with a src attribute. It’s possible for http://www.example.com to include a script
from http://static.example2.com, but the issue of dynamically including that script and
managing program flow became an issue. Thus, JSONP emerged as a standard to over-
come the same origin limitation.

16.9 Using jQuery and JSONP | 407

It is important to note that some of the approaches outlined here are
unsafe and may cause potential security issues. Make sure that you trust
the source of your data. Also, when including a script element in a page,
that entire script will have access to the entire HTML DOM and any
private or sensitive data that it may contain. It could be possible for a
malicious script to send this data to an untrusted party. Take extra pre-
caution such as placing the script in a sandbox. Extended security is
outside the scope of this recipe, but we wanted to make sure you were
aware of it.

JSONP makes use of requesting data through a <script> tag with a src attribute as well
as manages the program flow for the developer by wrapping the data in a callback
function that the developer can implement. Let’s first look at a sample JSON message.

{"title":"Hello World!","body":"It's great to be alive!"}

Here is the same message wrapped in a callback:

myCallback({"title":"Hello World!","body":"It's great to be alive!"})

What this allows for is when the resource is requested upon being loaded in the browser
the myCallback function will be called and have the JSON object passed in as the first
argument. The developer can then implement the myCallback function as follows to
process the data:

function myCallback(json) {
 alert(json.title);
}

Now let’s review our Flickr solution. First we define the URL of the Flickr web service
followed by declaring a params object for the get variables. The jsoncallback param is
a special param defined by the Flickr service that allows for us to pass in a function
name. Since we’ve set this parameter to a ?, jQuery will automatically generate a func-
tion name and bind it with our callback method.

jQuery detects that this is a JSONP (cross-domain request) by the =? in
the URL. It is not possible to pass this in the params array.

var url = 'http://www.flickr.com/services/feeds/photos_public.gne?
jsoncallback=?';
var params = { format: 'json' };

408 | Chapter 16: jQuery, Ajax, Data Formats: HTML, XML, JSON, JSONP

Next, we call jQuery’s $.getJSON() method, passing in our url, params, and our callback
function, which will accept a JSON object. In our callback method, we check and make
sure that an item’s array exists and then use jQuery’s $.each() to iterate over the first
three items, create a link, append an image to it, and then append the link to an element
with an ID of photos. Finally, our callback function will return false on the third iter-
ation (when i = 2), breaking the loop.

$.getJSON(url, params, function(json) {
 if (json.items) {
 $.each(json.items, function(i, n) {
 var item = json.items[i];
 $('')
 .append('')
 .appendTo('#photos');
 return i < 2;
 });
 }
});

With the combination of the JSON data format and the cross-domain capabilities of
JSONP, web developers are able to create new applications aggregating and trans-
forming data in new and innovative ways and growing the semantic Web.

16.9 Using jQuery and JSONP | 409

CHAPTER 17

Using jQuery in Large Projects

Rob Burns

17.0 Introduction
jQuery is often used to add small user interface enhancements to a website. However,
for larger, more complex web applications, jQuery is also quite useful. The sample
recipes throughout this chapter show how jQuery can be used to address the needs of
more substantial and interactive web content. The first three recipes explore different
methods of persisting data in a web browser. These are followed by a look at easing
the use of Ajax and JavaScript as the quantity of code and data in your application
grows.

17.1 Using Client-Side Storage
Problem
You are writing a rich Internet application that processes nontrivial amounts of user
data in the web browser. Motivated by the desire to cache this data for performance
reasons or to enable offline use of your application, you need to store data on the client.

Solution
A simple to-do list will be used to illustrate storing data on the client. As with many of
the recipes in this chapter, a jQuery plugin will be used to handle browser
inconsistencies:

<!DOCTYPE html>
<html><head>
 <title>17.1 - Using Client-Side Storage</title>
 <script type="text/javascript" src="../../jquery-1.3.2.min.js"></script>
 <script type="text/javascript" src="jquery.jstore-all.js"></script>
</head>

411

<body>
 <h1>17.1 - Using Client-Side Storage</h1>
 <p>Storage engine: </p>
 <input id="task-input"></input>
 <input id="task-add" type="submit" value="Add task"></input>
 <input id="list-clear" type="submit" value="Remove all tasks"></input>
 <ul id="task-list">
</body></html>

The HTML consists of form elements for manipulating the to-do list: a text field to
input a task, and buttons for adding a task and deleting all tasks. The current tasks will
be listed using an unordered list:

(function($) {
 $.jStore.ready(function(ev,engine) {
 engine.ready(function(ev,engine) {
 $('#storage-engine').html($.jStore.CurrentEngine.type);
 $('#task-list').append($.store('task-list'));
 });
 });

The jStore plugin provides two callbacks: jStore.ready() and engine.ready(). Much
like jQuery’s ready() function, these allow us to do some initial setup once jStore and
the current storage engine have completed their internal initialization. This opportunity
is used to display the currently used storage engine and any saved to-do items on
the page:

 $('document').ready(function() {
 $('#task-add').click(function() {
 var task = $('#task-input').val();
 var taskHtml = 'done ' + task + '';
 $.store('task-list',$('#task-list').append(taskHtml).html());
 return false;
 });

Once the document is ready, click events are bound to the appropriate controls. When
the “Add task” button is clicked, a list-item element is constructed with the contents
of the task text field and a link to mark this task as done. The list item is then appended
to the contents of the task list, and the task list is saved in local storage using the task-
list key. At a later time, the list can be retrieved using this key, as is being done in the
engine.ready() callback:

 $('#list-clear').click(function() {
 $('#task-list').empty();
 $.remove('task-list');
 return false;
 });

When the “Remove all tasks” button is clicked, the element containing the to-do list
is emptied of its contents. The task-list key and its associated value are then removed
from local storage:

412 | Chapter 17: Using jQuery in Large Projects

 $('#task-list a').live('click',function() {
 $(this).parent().remove();
 var taskList = $('#task-list').html();
 if(taskList) { $.store('task-list',taskList); }
 else { $.remove('task-list'); }
 return false;
 });
 });
})(jQuery);

Lastly, a live event is bound to the done links for each item in the to-do list. By using
the live() function, instead of the bind() function or a shortcut such as click(), all
elements that match #task-list a will have the given function bound to the click event,
even elements that do not yet exist at the time live() is called. This allows us to insert
“done” links for each new item, without rebinding the click event each time the inser-
tion occurs.

When an item is marked as done, it is removed from the list, and the updated list saved
in local storage using the task-list key. Some care needs to be taken when saving the
updated list:

 if(taskList) { $.store('task-list',taskList); }
 else { $.remove('task-list'); }

In the case that the last item in the list is being removed, the taskList variable will be
empty. This causes the store() function to be evaluated as if it were called with a single
parameter, not two. When store() is passed a single parameter, the value held at that
key is retrieved, and the saved list is unmodified. The goal is to save an empty list. The
remove() function in the else clause removes the task-list key and its associated value.
This meets the goal of setting the saved state to an empty list.

Discussion
Traditionally, the only option available to store data on the client was cookies. The
amount of data that can be stored in a cookie is very limited. Better alternatives now
exist. The following table contains currently available storage mechanisms and their
browser compatibility.

 Firefox Safari Internet Explorer

DOM Storage 2.0+ no 8.0+

Gears yes yes yes

Flash yes yes yes

SQL Storage API no 3.1+ no

userData behavior no no 5.0+

DOM Storage and the SQL Storage API are part of emerging HTML standards. As such,
they don’t yet enjoy thorough cross-browser support. Google Gears and Flash are

17.1 Using Client-Side Storage | 413

browser plugins that can be used for client-side storage. Internet Explorer has, for some
time, included the userData behavior for client-side storage. If a single mechanism to
support all major browsers is needed, a Flash or Google Gears–based approach offers
support for the widest variety. However, it requires users to have a browser plugin
installed.

The 1.0.3 release of the jStore plugin contains a bug. A typo needs to be
corrected. Line 403 of jquery.jstore-all.js should read as follows:

return !!(jQuery.hasFlash('8.0.0'));

Fortunately, jStore (available at http://plugins.jquery.com/project/jStore) affords a layer
of abstraction, which enables cross-browser and client-side storage and, in most cases,
doesn’t rely on browser plugins. jStore provides a unified interface to the storage mech-
anisms listed previously. While manual selection is supported, this example illustrates
jStore’s ability to automatically select the appropriate storage mechanism for the
browser currently in use. When viewed in different browsers, this recipe displays the
currently selected storage mechanism.

17.2 Saving Application State for a Single Session
Problem
You want to persist data on the client only until the current session is ended, i.e., the
window or tab is closed.

Solution
In this example there are two HTML pages. Each page contains a set of selectable
elements. When elements are selected and deselected, the state of the page is persisted.
By navigating to and from the two pages, you can see how the state of any given page
can be maintained as a user navigates through a website. The sessionStorage object is
used for data that doesn’t require persisting between a user’s subsequent visits:

<!DOCTYPE html>
<html><head>
 <title>17.2 Saving Application State for a Single Session</title>
 <style>
 .square {
 width: 100px; height: 100px; margin: 15px;
 background-color: gray; border: 3px solid white; }
 .selected {
 border: 3px solid orange; }
 </style>
 <script src="../../jquery-1.3.2.min.js"></script>
</head>

414 | Chapter 17: Using jQuery in Large Projects

http://plugins.jquery.com/project/jStore

<body>
 <h1>17.2 Saving Application State for a Single Session</h1>
 page one
 page two
 <div id="one" class="square"></div>
 <div id="two" class="square"></div>
 <div id="three" class="square"></div>
</body></html>

Each of the two HTML pages (one.html and two.html) have the same content. The
following JavaScript code takes care of managing the state of each page, such that each
page reflects past user manipulation:

jQuery(document).ready(function() {
 $('.square').each(function(){
 if(sessionStorage[window.location + this.id] == 'true') {
 $(this).addClass('selected');
 }
 });

 $('.square').click(function() {
 $(this).toggleClass('selected');
 sessionStorage[window.location + this.id] = $(this).hasClass('selected');
 return false;
 });
});

When the document is loaded, the sessionStorage object is queried for keys comprising
the current URL and the id of each of the selectable squares. Each square has a CSS
class applied if appropriate. When a square is clicked, its display is affected by toggling
a CSS class, and its state is persisted accordingly. Each square’s state is persisted using
a key generated from the current URL and current element id pair.

Discussion
Similar session-delimited client-side storage is available when using the jStore plugin
from the previous recipe. By using jStore, you gain the benefits of cross-browser com-
patibility. This recipe will only work in Internet Explorer 8.0 and Firefox 2.0 or higher.
Safari 3.1 doesn’t have this feature, though future versions are slated to include it.

The DOM storage API is attractive in cases where broad browser compatibility isn’t a
concern. Applications developed for internal company intranets may fall into this cat-
egory. It is also part of the upcoming HTML5 specification. In the future its availability
is likely to spread. Using a built-in storage API has the benefit of incurring no overhead
from additional JavaScript code. The minified jStore plugin and jStore.swf flash com-
ponent are 20 KB in size.

17.2 Saving Application State for a Single Session | 415

17.3 Saving Application State Between Sessions
Problem
You want to persist data on the client between sessions. Recipe 17.1 saves the state of
the to-do list in between sessions. This recipe illustrates how to enable similar func-
tionality without using the jStore plugin.

Solution
For the HTML part of this solution, please refer to Recipe 17.1 (as it is identical). The
JavaScript is listed here:

(function($) {
 $('document').ready(function() {
 if(window.localStorage) { appStorage = window.localStorage; }
 else { appStorage = globalStorage[location.hostname]; }

 var listHtml = appStorage['task-list'];
 $('#task-list').append(listHtml.value ? listHtml.value : listHtml);

The initial setup is somewhat more verbose than the jStore-based solution. Firefox has
a nonstandard implementation of the long-term storage portion of the DOM storage
API. It uses the globalStorage array, as opposed to the localStorage object to persist
data between sessions. Each storage object in the globalStorage array is keyed on the
domain that the current document is being served from. This code will use
localStorage if it is available. Otherwise, it will fall back to globalStorage.

In the next section of code, the unordered list is populated with any existing tasks. In
the jStore-based example this was a single line of code. The additional complexity here
is because of Firefox’s particular behavior. A string is returned from localStorage. But,
an object with two attributes, value and secure, is returned when accessing
globalStorage. The value attribute is used if present. Otherwise, a string returned from
localStorage is assumed:

 $('#task-add').click(function() {
 var task = $('#task-input').val();
 var taskHtml = 'done ' + task + '';
 appStorage['task-list'] = $('#task-list').append(taskHtml).html();
 return false;
 });

 $('#list-clear').click(function() {
 $('#task-list').empty();
 appStorage['task-list'] = '';
 return false;
 });

 $('#task-list a').live('click',function() {
 $(this).parent().remove();
 appStorage['task-list'] = $('#task-list').html();

416 | Chapter 17: Using jQuery in Large Projects

 return false;
 });
 });
})(jQuery);

The remainder of the code adds new tasks, removes tasks when marked “done,” and
clears the task list by attaching events to DOM elements like the previous jStore-based
recipe. However, instead of using the jStore function-based interface for manipulating
persisted data, values in the appStorage object created earlier can be assigned directly.
This allows the code to remove a task to be simplified.

Discussion
The DOM Storage API consists of two interfaces: sessionStorage and localStorage.
Firefox has included this feature since version 2.0, when the standard was still in de-
velopment. Since then, the standard has undergone revision. Internet Explorer 8.0 has
an implementation of the current API. Forthcoming versions of Safari and Firefox will
conform to the current specification as well. That said, Firefox 2.0–3.0 browsers will
persist for some time. Coding an application to support globalStorage will additionally
serve these legacy browsers.

17.4 Using a JavaScript Template Engine
Problem
You want to use a JavaScript template engine to display JSON data.

Solution
This recipe is a book listing. It grabs information about a book from a server-side script
and adds it to a list of books displayed in the browser. The book details are returned
from the server as a JSON string. The Pure templating engine (available at http://plugins
.jquery.com/project/pure) is used to format the data and insert it into the web page:

<!DOCTYPE html>
<html><head>
 <title>jQuery Cookbook - 17.4 Using a Javascript Template Engine</title>
 <style>.hidden { display: none }</style>
 <script type="text/javascript" src="../../jquery-1.3.2.min.js"></script>
 <script type="text/javascript" src="pure.js"></script>
</head>

<body>
 <h1>17.4 - Using a Javascript Template Engine</h1>
 <input type="button" id="add-book" value="Add book"></input>
 <input type="button" id="clear-list" value="Clear booklist"></input>
 <div id="book-list"></div>

17.4 Using a JavaScript Template Engine | 417

http://plugins.jquery.com/project/pure
http://plugins.jquery.com/project/pure

There are two buttons. One will fetch book details from the server when clicked. The
other will clear the locally displayed book list. The book list will be displayed inside a
<div> element with an id of book-list. These elements are visible when the page is
loaded:

 <div id="book-template" class="hidden book">
 <ul class="author-list"><li class="author">

 <p class="title"></p>
 <p class="year"></p>
 <div class='book-footer'>
 <div class="rating-div">Rating: </div>
 <div>Location: </div>
 </div>
 </div>
</body></html>

The <div> with an id of book-template has a class hidden assigned to it. This <div> is
not displayed. It will be used as a template for the data received from the server. The
Pure templating engine associates attributes in a data structure with HTML elements
that have the same class. Therefore, the contents of the paragraph element with class
year will reflect the value of the year attribute in our data structure:

{
 "title": "Democracy and the Post-Totalitarian Experience",
 "author": [
 {
 "name": "Leszek Koczanowicz"
 },
 {
 "name": "Beth J. Singer"
 }
],
 "year": "2005",
 "rating": "3",
 "location": "Mandalay"
}

The preceding code is an example of the JSON data that is returned from the server.
The title, year, rating, and location attributes have a single value and map directly
to a single element in the HTML template. In order to repeat any of these values more
than once, one only has to assign the appropriate class to additional elements in the
template.

The author attribute contains an array of objects. Each object has a single attribute:
name. Multiple authors are represented this way in order to illustrate the iteration ca-
pabilities of the templating engine. The template contains a single list item element
with class author. The list item contains a element with class <name>. For attrib-
utes within the data structure that have an array value, an instance of the associated
HTML element will be created for each element of the array. In this way, an arbitrary
number of list items can be created:

418 | Chapter 17: Using jQuery in Large Projects

(function($) {
 $('document').ready(function() {
 $('#add-book').data('id',1);

Once the document is ready, the JavaScript code starts by using the jQuery data()
function to store the current id of the book we will be requesting. This id will be
incremented each time a book is requested. The data() function allows arbitrary data
to be stored in DOM elements:

 $('#add-book').click(function() {
 var curId = $(this).data('id');
 $.getJSON('server.php', {id: +curId}, function(data) {
 if(data.none) { return false; }
 var divId = 'book-' + curId;
 $('#book-list').append($('#book-template').clone().attr('id',divId));
 $('#'+divId).autoRender(data).removeClass('hidden');
 $('#add-book').data('id', curId + 1);
 });
 return false;
 });

When the “Add book” button is clicked, a request is made to the server using the jQuery
getJSON() function. The templating process starts by making a clone of the hidden
<div> in our HTML. The id of this clone must be changed before it is appended to the
book list. If the id isn’t changed, then a DOM element with a non-unique id will have
been introduced. The autoRender() function from the Pure plugin is then called with
the JSON data as an argument. This renders the template using the provided data.
Lastly, the hidden class is removed, making the book details visible:

 $('#clear-list').click(function() {
 $('#add-book').data('id',1);
 $('#book-list').empty();
 return false;
 });
 });
})(jQuery);

The function to clear the book list is fairly straightforward. The appropriate <div>
element is emptied, and the book id counter is reset to 1.

Discussion
There are two benefits to using JavaScript-based templating engines. One is that they
allow the transformation of a JSON data structure into styled and structured HTML
without manually manipulating each element of the data structure. This benefit can be
realized by applying a templating engine to the variety of small chunks of data that are
commonly retrieved by Ajax calls, as this example illustrated.

The second benefit of using a JavaScript templating engine is that it produces pure
HTML templates. These templates contain no traces of the scripting languages, which
are usually used to denote the data to be templated, and implement functionality such
as iteration. It’s difficult to take advantage of this when using the templating engine in

17.4 Using a JavaScript Template Engine | 419

the browser, as done in this recipe. The negative impact this has on a site’s appeal to
search engines dissuades most people from going this route. However, jQuery and the
Pure templating engine can be run in server-side JavaScript environments, as well.
Jaxer, Rhino, and SpiderMonkey have all been known to work.

17.5 Queuing Ajax Requests
Problem
You want to have greater control over the order of many separate Ajax requests.

Solution
This recipe illustrates two different ways to queue Ajax requests. The first fills a queue
with requests, sending subsequent requests once the previous request has returned a
response. The second sends groups of requests in parallel. But, it doesn’t execute the
callback functions for each request until all responses have returned. An example of
normal unqueued requests is included for comparison:

<!DOCTYPE html>
<html><head>
 <title>jQuery Cookbook - 17.5 - Queuing Ajax Requests</title>
 <script type="text/javascript" src="../../jquery-1.3.2.min.js"></script>
 <script type="text/javascript" src="jquery-ajax-queue_1.0.js"></script>
</head>

<body>
 <h1>17.5 - Queuing Ajax Requests</h1>
 <input type="button" id="unqueued-requests" value="Unqueued requests"></input>
 <input type="button" id="queued-requests" value="Queued requests"></input>
 <input type="button" id="synced-requests" value="Synced requests"></input>
 <p id="response"></p>
</body></html>

The ajaxqueue jQuery plugin (available at http://plugins.jquery.com/project/ajax
queue/) is used for queuing behaviors. Three buttons trigger each set of Ajax requests.
A log of the responses is displayed in a paragraph element:

(function($) {
 $('document').ready(function() {
 $('#unqueued-requests').click(function() {
 $('#response').empty();
 $.each([1,2,3,4,5,6,7,8,9,10], function() {
 $.get('server.php',{ data: this }, function(data) {
 $('#response').append(data);
 });
 });
 return false;
 });

420 | Chapter 17: Using jQuery in Large Projects

http://www.aptana.com/jaxer
http://www.mozilla.org/rhino/
http://www.mozilla.org/js/spidermonkey/
http://plugins.jquery.com/project/ajaxqueue/
http://plugins.jquery.com/project/ajaxqueue/

The first button triggers normal Ajax requests. Ten requests are sent, each with a num-
ber for their position in the sequence. The server.php script simulates a server under
load by sleeping random amounts of time before returning a response. When it arrives,
the response is appended to the contents of the #response paragraph:

 $('#queued-requests').click(function() {
 $('#response').empty();
 $.each([1,2,3,4,5,6,7,8,9,10], function() {
 $.ajaxQueue({url: 'server.php',
 data: { data: this },
 success: function(data) { $('#response').append(data); }
 });
 });
 $.dequeue($.ajaxQueue, "ajax");
 return false;
 });

The “Queued requests” button adds each request to a queue by calling the
ajaxQueue() function. Internally, the ajax() function is called with the provided op-
tions, each time a request is dequeued. After each of the requests has added to the
queue, a call to dequeue() with the ajaxQueue function as a parameter triggers the first
request. Each subsequent request will be sent in turn:

 $('#synced-requests').click(function() {
 $('#response').empty();
 $.each([1,2,3,4,5,6,7,8,9,10], function() {
 $.ajaxSync({url: 'server.php',
 data: { data: this },
 success: function(data) { $('#response').append(data); }
 });
 });
 return false;
 });
 });
})(jQuery);

The final set of requests use the ajaxSync() function to send the requests in parallel but
synchronize the execution of the provided callbacks when the responses return.

Discussion
Responses from the unqueued requests come back out of order. This behavior is not
necessarily undesirable and in many cases may be preferred. However, there are sce-
narios where one would like more control over Ajax requests and their responses. The
functionality provided in ajaxQueue() suits the case where each subsequent request is
dependent upon the response to the previous request, whereas ajaxSync() supports the
use case of manipulating data, which is gathered from a variety of servers. In this sce-
nario, processing is unable to commence until all servers have returned a response and
the complete set of data is present.

17.5 Queuing Ajax Requests | 421

17.6 Dealing with Ajax and the Back Button
Problem
Populating web pages using Ajax creates a convenient, interactive user experience,
which can’t be replicated with traditional HTTP requests. Unfortunately, each time
you update the contents of the browser window with Ajax, that content becomes
inaccessible to the back and forward buttons of your browser. The bookmarking func-
tionality found in most browsers is also rendered nonfunctional.

Solution
The solution to this problem is to relate each Ajax request to a unique URL. This URL
can then be bookmarked and accessed by the back and forward browser buttons. One
method for doing this is to use hash values. Hash values are generally used to link into
a specific position within a document. http://en.wikipedia.org/wiki/Apple#History links
to the history section of the Wikipedia page for Apple. For the purposes of this recipe,
the hash value will refer to content loaded by an Ajax request.

In this example, the sample project is a small glossary. It has three entries. When you
click each entry, the definition for the word is retrieved and displayed via Ajax. Granted,
the content could easily be displayed all at once on a single page. However, this same
approach is appropriate for larger, more varied data, such as the contents of each tab
in a tabbed interface:

<!DOCTYPE html>
<html><head>
 <title>17.6 Dealing with Ajax and the Back Button</title>
 <script src="../../jquery-1.3.2.min.js"></script>
 <script src="jquery.history.js"></script>
</head>

<body>
 <h1>17.6 Ajax and the Back Button</h1>
 apples
 oranges
 bananas
 <p id='definition'></p>
</body></html>

Necessary JavaScript files are included in the head of the document. The
jquery.history.js file contains the jQuery history plugin (available at http://plugins
.jquery.com/project/history). There is an anchor element for each of the three entries in
the glossary. The definition for each entry will be displayed in the paragraph with an
id of definition:

(function($) {
 function historyLoad(hash) {
 if(hash) { $('#definition').load('server.php',{word: hash}); }
 else { $('#definition').empty(); }

422 | Chapter 17: Using jQuery in Large Projects

http://en.wikipedia.org/wiki/Apple#History
http://plugins.jquery.com/project/history
http://plugins.jquery.com/project/history

 }

 $(document).ready(function() {
 $.history.init(historyLoad);
 $('a.word').click(function() {
 $.history.load($(this).html());
 return false;
 });
 });
})(jQuery);

The history plugin has two functions that are of concern: init() and load(). The
init() function is called inside the ready function. A callback to handle Ajax requests
is passed in as an argument. load() is bound to the word links. The content of each
anchor tag is passed in as an argument. The callback historyLoad() takes care of re-
questing the content for the passed-in hash value. It also needs to be able to handle
instances where there is no hash value.

Discussion
There are two instances when the historyLoad() callback is called. First, it is called
inside the $.history.init() function, when the page is loaded. The hash value is strip-
ped from the end of the URL and passed as the argument. If there is not a hash value
present, the argument is empty. The load() function also calls historyLoad(). The ar-
gument we pass to $.history.load(), the word we clicked, in this case, is passed on as
the hash argument to our callback.

In this solution, a jQuery plugin was used. It is relatively easy to implement similar
functionality without a plugin, by using JavaScript’s window.location.hash object. The
jQuery history plugin comprises only 156 lines of code. The reason it was chosen over
writing a solution from scratch is that a large part of the plugin code handles cross-
browser inconsistencies. When handling browser differences, it’s often more effective
to draw from the communal pool of experience that accumulates in a plugin than try
and to account for every implementation discrepancy oneself.

17.7 Putting JavaScript at the End of a Page
Problem
As a project grows in size, often the amount of JavaScript it contains grows as well.
This results in slower page load times. Combining several disparate JavaScript files into
one monolithic file, using minification, and using compression can help reduce the
JavaScript size and reduce the number of HTTP requests made. But, one will always
be left with some amount of code to load. It would be nice if the impact of this code
on perceived load times could be reduced.

17.7 Putting JavaScript at the End of a Page | 423

Solution
A user perceives load times based on what they see on the screen. A browser has a
limited number of HTTP connections at its disposal to load external content, such as
JavaScript, CSS stylesheets, and images. When JavaScript is placed at the top of the
document, it can delay the loading of other visible resources. The solution is to place
your JavaScript files at the end of your page:

<!DOCTYPE html>
<html><head>
 <title>17.7 Putting JavaScript at the End of a Page</title>
</head>

<body>
 <h1>17.7 Putting JavaScript at the End of a Page</h1>
 <p>Lorem ipsum dolor...</p>
 <script src="../../jquery-1.3.2.min.js"></script>
 <script type="text/javascript">
 jQuery(document).ready(function() {
 jQuery('p').after('<p>Ut ac dui ipsum...</p>').show();
 });
 </script>
</body></html>

Discussion
By placing the JavaScript just before the closing <body> tags, any images or CSS style-
sheets that are referenced previously in the document are loaded first. This won’t cause
the page to load any faster. However, it will decrease the perceived load time. Visible
elements will be given priority over the JavaScript code. Loading the JavaScript files
late in the page doesn’t incur any drawbacks because it generally shouldn’t be executed
until the entire page is loaded.

No benefit is gained from putting the inline JavaScript at the end of the document. It
is placed there in this example because the jQuery function can’t be called until
jquery-1.3.2.min.js is loaded. If we placed the inline JavaScript in the <head> element,
an error would be generated because of jQuery not being defined.

424 | Chapter 17: Using jQuery in Large Projects

CHAPTER 18

Unit Testing

Scott González and Jörn Zaefferer

18.0 Introduction
Automated testing of software is an essential tool in development. Unit tests are the
basic building blocks for automated tests: each component, the unit, of software is
accompanied by a test that can be run by a test runner over and over again without any
human interaction. In other words, you can write a test once and run it as often as
necessary without any additional cost.

In addition to the benefits of good test coverage, testing can also drive the design of
software, known as test-driven design, where a test is written before an implementation.
You start writing a very simple test, verify that it fails (because the code to be tested
doesn’t exist yet), and then write the necessary implementation until the test passes.
Once that happens, you extend the test to cover more of the desired functionality and
implement again. By repeating those steps, the resulting code looks usually much dif-
ferent from what you’d get by starting with the implementation.

Unit testing in JavaScript isn’t much different from in other programming languages.
You need a small framework that provides a test runner, as well as some utilities to
write the actual tests.

18.1 Automating Unit Testing
Problem
You want to automate testing your applications and frameworks, maybe even benefit
from test-driven design. Writing your own testing framework may be tempting, but it
involves a lot of work to cover all the details and special requirements of testing Java-
Script code in various browsers.

425

Solution
While there are other unit testing frameworks for JavaScript, we will take a look at
QUnit. QUnit is jQuery’s unit test framework and is used by a wide variety of projects.

To use QUnit, you need to include jQuery and two QUnit files on your HTML page.
QUnit consists of testrunner.js, the test runner and testing framework, and
testsuite.css, which styles the test suite page to display test results:

<!DOCTYPE html>
<html>
<head>
 <title>QUnit basic example</title>
 <script src="http://code.jquery.com/jquery-latest.js"></script>
 <link rel="stylesheet"
href="http://jqueryjs.googlecode.com/svn/trunk/qunit/testsuite.css" type="text/css"
media="screen" />
 <script type="text/javascript"
src="http://jqueryjs.googlecode.com/svn/trunk/qunit/testrunner.js"></script>

<script type="text/javascript">
 test("a basic test example", function() {
 ok(true, "this test is fine");
 var value = "hello";
 equals(value, "hello", "We expect value to be hello");
 });
</script>

</head>
<body>
 <div id="main"></div>
</body>
</html>

Opening this file in a browser gives the result shown in Figure 18-1.

Figure 18-1. Test result in a browser

426 | Chapter 18: Unit Testing

http://jquery-cookbook.com/go/qunit

The only markup necessary in the <body> element is a <div> with id="main". This is
required for all QUnit tests, even when the element itself is empty. This provides the
fixture for tests, which will be explained in Recipe 18.6.

The interesting part is the <script> element following the testrunner.js include. It
consists of a call to the test function, with two arguments: the name of the test as a
string, which is later used to display the test results, and a function. The function con-
tains the actual testing code, which involves one or more assertions. The example uses
two assertions, ok() and equals(), which are explained in detail in Recipe 18.2.

Note that there is no document-ready block. The test runner handles that: calling
test() just adds the test to a queue, and its execution is deferred and controlled by the
test runner.

Discussion
The header of the test suite displays the page title, a green bar when all tests passed (a
red bar when at least one test failed), a gray bar with the navigator.userAgent string
(handy for screenshots of test results in different browsers), and a bar with a few check-
boxes to filter test results.

“Hide passed tests” is useful when a lot of tests ran and only a few failed. Checking the
checkbox will hide everything that passed, making it easier to focus on the tests that
failed.

“Hide missing tests” is useful when you have a lot of tests that are just placeholders,
indicated by the test name “missing test—untested code is broken code.” This can be
useful when you have a large untested code base and added placeholders for every test
that still needs to be written. In order to focus on tests that are already implemented,
you can use the checkbox to temporarily hide the placeholder tests.

The actual contents of the page are the test results. Each entry in the numbered list
starts with the name of the test followed by, in parentheses, the number of failed,
passed, and total assertions. Clicking the entry will show the results of each assertion,
usually with details about expected and actual results. Double-clicking will run just
that test (see Recipe 18.8 for details).

Below the test results is a summary, showing the total time it took to run all tests as
well as the overall number of total and failed assertions.

18.2 Asserting Results
Problem
Essential elements of any unit test are assertions. The author of the test needs to express
the results expected and have the unit testing framework compare them to the actual
values that an implementation produces.

18.2 Asserting Results | 427

Solution
QUnit provides three assertions.

ok(boolean[, message])

The most basic one is ok(), which requires just one Boolean argument. When the ar-
gument is true, the assertion passes; otherwise, it fails. In addition, it accepts a string
to display as a message in the test results:

test("ok test", function() {
 ok(true, "ok succeeds");
 ok(false, "ok fails");
});

equals(actual, expected[, message])

The equals assertion uses the simple comparison operator (==) to compare the actual
and expected arguments. When they are equal, the assertion passes; otherwise, it fails.
When it fails, both actual and expected values are displayed in the test result, in addition
to a given message:

test("equals test", function() {
 equals("", 0, "equals succeeds");
 equals("three", 3, "equals fails");
});

Compared to ok(), equals() makes it much easier to debug tests that failed, because
it’s obvious which value caused the test to fail.

same(actual, expected[, message])

The same() assertion can be used just like equals() and is a better choice in most cases.
Instead of the simple comparison operator (==), it uses the more accurate comparison
operator (===). That way, undefined doesn’t equal null, 0, or the empty string (""). It
also compares the content of objects so that {key: value} is equal to {key: value}, even
when comparing two objects with distinct identities.

same() also handles NaN, dates, regular expressions, arrays, and functions, while
equals() would just check the object identity:

test("same test", function() {
 same(undefined, undefined, "same succeeds");
 same("", 0, "same fails");
});

In case you want to explicitly not compare the content of two values, equals() can still
be used. In general, same() is the better choice.

428 | Chapter 18: Unit Testing

18.3 Testing Synchronous Callbacks
Problem
When testing code with a lot of callbacks, it happens every once in a while that a test
that actually should fail just passes, with the assertions in question never showing up
in the test results. When the assertions are in a callback that is never called, the asser-
tions aren’t called either, causing the test to silently pass.

Solution
QUnit provides a special assertion to define the number of assertions a test contains.
When the test completes without the correct number of assertions, it will fail, no matter
what result the other assertions, if any, produced.

Usage is plain and simple; just call expect() at the start of a test, with the number of
expected assertions as the only argument:

test("a test", function() {
 expect(1);
 $("input").myPlugin({
 initialized: function() {
 ok(true, "plugin initialized");
 }
 });
});

Discussion
expect() provides the most value when actually testing callbacks. When all code is
running in the scope of the test function, expect() provides no additional value—any
error preventing assertions to run would cause the test to fail anyway, because the test
runner catches the error and considers the test as failed.

18.4 Testing Asynchronous Callbacks
Problem
While expect() is useful to test synchronous callbacks (see Recipe 18.3), it falls short
when testing asynchronous callbacks. Asynchronous callbacks conflict with the way
the test runner queues and executes tests. When code under test starts a timeout or
interval or an Ajax request, the test runner will just continue running the rest of the
test, as well as other tests following it, instead of waiting for the result of the asynchro-
nous operation.

18.4 Testing Asynchronous Callbacks | 429

Solution
There are two functions to manually synchronize the test runner with the asynchronous
operation. Call stop() before any asynchronous operation, and call start() after all
assertions are done, and the test runner can continue with other tests:

test("a test", function() {
 stop();
 $.getJSON("/someurl", function(result) {
 equals(result.value, "someExpectedValue");
 start();
 });
});

Discussion
A shortcoming of this approach to manual synchronization is the risk that start() is
never called when the code under test fails elsewhere. In that case, the test runner never
continues and therefore never finishes to display the end result. It can’t even display
the result for the current test, so all that is displayed is the result of the previous test.

When that happens, you first need to identify the test that doesn’t finish by looking for
the previous test that finished and then finding that test in code and skipping to the
next test. Once that is done, you can ease debugging by adding a timeout argument to
the call to stop():

test("a test", function() {
 stop(500);
 $.getJSON("/someurl", function(result) {
 equals(result.value, "someExpectedValue");
 start();
 });
});

In this example, the test runner would wait 500 ms for the test to finish (using
setTimeout); otherwise, it would declare the test as failed and continue running. By
seeing the result of other tests, it can be much easier to identify the actual problem and
fix it.

Nonetheless, the timeout argument shouldn’t be used for regular tests. If you added it
for debugging, remove it once the test works again.

Why is that? The drawback of the timeout is that it makes tests undeterministic. When
running the test on a slow machine or under heavy load, the timeout may be too short,
causing an otherwise perfectly fine test to fail. Hunting a bug that doesn’t exist at all is
a very time-consuming and frustrating experience—avoid it.

430 | Chapter 18: Unit Testing

18.5 Testing User Actions
Problem
Code that relies on actions initiated by the user can’t be tested by just calling a function.
Usually an anonymous function is bound to an element’s event, e.g., a click, which has
to be simulated.

Solution
You can trigger the event using jQuery’s trigger() method and test that the expected
behavior occurred. If you don’t want the native browser events to be triggered, you can
use triggerHandler() to just execute the bound event handlers. This is useful when
testing a click event on a link, where trigger() would cause the browser to change the
location, which is hardly desired behavior in a test.

Let’s assume we have a simple key logger that we want to test:

var keylogger = {
 log: null,
 init: function() {
 keylogger.log = [];
 $(document).unbind("keydown").keydown(function(event) {
 keylogger.log.push(event.keyCode);
 });
 }
};

We can manually trigger a keypress event to see whether the logger is working:

test("basic keylogger behavior", function() {
 // initialize
 keylogger.init();

 // trigger event
 var event = $.Event("keydown");
 event.keyCode = 9;
 $(document).trigger(event);

 // verify expected behavior
 same(keylogger.log.length, 1, "a key was logged");
 same(keylogger.log[0], 9, "correct key was logged");
});

Discussion
If your event handler doesn’t rely on any specific properties of the event, you can just
call .trigger(eventType). However, if your event handler does rely on specific prop-
erties of the event, you will need to create an event object using $.Event and set the
necessary properties, as shown previously.

18.5 Testing User Actions | 431

It’s also important to trigger all relevant events for complex behaviors such as dragging,
which is comprised of mousedown, at least one mousemove, and a mouseup. Keep in
mind that even some events that seem simple are actually compound; e.g., a click is
really a mousedown, mouseup, and then click. Whether you actually need to trigger
all three of these depends on the code under test. Triggering a click works for most cases.

18.6 Keeping Tests Atomic
Problem
When tests are lumped together, it’s possible to have tests that should pass but fail or
tests that should fail but pass. This is a result of a test having invalid results because of
side effects of a previous test:

test("2 asserts", function() {
 $("#main").append("<div>Click here for messages.</div>");
 same($("#main div").length, 1, "added message link successfully");
 $("#main").append("You have a message!");
 same($("#main span").length, 1, "added notification successfully");
});

Notice the first append() adds a that the second assert doesn’t take into account.

Solution
Use the test() method to keep tests atomic, being careful to keep each assertion clean
of any possible side effects. You should only rely on the fixture markup, inside the
#main element. Modifying and relying on anything else can have side effects:

test("test 1", function() {
 $("#main").append("<div>Click here for messages
.</div>");
 same($("#main div").length, 1, "added message link successfully");
});
test("test 2", function() {
 $("#main").append("You have a message!");
 same($("#main span").length, 1, "added notification successfully");
});

QUnit will reset the elements inside the #main element after each test, removing any
events that may have existed. As long as you use elements only within this fixture, you
don’t have to manually clean up after your tests to keep them atomic.

Discussion
In addition to the #main fixture element, QUnit will also clean up properties of jQuery
itself: $.event.global and $.ajaxSettings. Any global events like $().ajaxStart() are
managed by jQuery in $.event.global—if your test had bound lots of them, it could

432 | Chapter 18: Unit Testing

slow down the test runner significantly when running a lot of tests. By cleaning the
property, QUnit ensures that your tests aren’t affected by global events.

The same applies to $.ajaxSettings, which is usually used via $.ajaxSetup() to con-
figure common properties for $.ajax() calls.

In addition to the filters explained in Recipe 18.8, QUnit also offers a ?noglobals flag.
Consider the following test:

test("global pollution", function(){
 window.pollute = true;
 same(pollute, true);
});

In a normal test run, this passes as a valid result. Running the same test with the
noglobals flag will cause the test to fail, because QUnit detected that it polluted the
window object.

There is no need to use this flag all the time, but it can be handy to detect global
namespace pollution that may be problematic in combination with third-party libraries.
And it helps to detect bugs in tests caused by side effects.

18.7 Grouping Tests
Problem
You’ve split up all of your tests to keep them atomic and free of side effects, but you
want to keep them logically organized and be able to run a specific group of tests on
their own.

Solution
You can use the module() function to group tests together:

module("group a");
test("a basic test example", function() {
 ok(true, "this test is fine");
});
test("a basic test example 2", function() {
 ok(true, "this test is fine");
});

module("group b");
test("a basic test example 3", function() {
 ok(true, "this test is fine");
});
test("a basic test example 4", function() {
 ok(true, "this test is fine");
});

18.7 Grouping Tests | 433

http://jquery-cookbook.com/examples/18/06-keeping-tests-atomic/globals.html?noglobals

All tests that occur after a call to module() will be grouped into that module. The test
names will all be preceded by the module name in the test results. You can then use
that module name to select tests to run (see Recipe 18.8).

Discussion
In addition to grouping tests, module() can be used to extract common code from tests
within that module. The module() function takes an optional second parameter to de-
fine functions to run before and after each test within the module:

module("module", {
 setup: function() {
 ok(true, "one extra assert per test");
 }, teardown: function() {
 ok(true, "and one extra assert after each test");
 }
});
test("test with setup and teardown", function() {
 expect(2);
});

You can specify both setup and teardown properties together, or just one of them.

Calling module() again without the additional argument will simply reset any setup/
teardown functions defined by another module previously.

18.8 Selecting Tests to Run
Problem
When debugging a failing test, it can be a huge waste of time to rerun the entire test
suite after every little change to your code just to see whether a single test now passes.

Solution
QUnit offers URL filtering to select the tests to run. This works best when
combined with modules. You can run just the tests from a given module by appending
a query string with the module name to the test suite URL. For example,
test.html?validation will run all tests in the module named validation:

// test.html?validation - just the validation module
// test.html?validation&tooltip - validation and tooltip module
// test.html?!validation - exclude the validation module
// test.html?test 3 - just "test 3", the url will be displayed as test.html?test%203
module("validation");
test("test 1", function () {
 ok(true, "bool succeeds");
});
test("test 2", function () {
 equals(5, 5.0, "equals succeeds");
});

434 | Chapter 18: Unit Testing

module("tooltip");
test("test 3", function () {
 same(true, 3 == 3, "same succeeds");
});

test("test 4", function () {
 ok(false, "bool fails");
});
module("other");
test("test 5", function () {
 equals(3, 5, "equals fails");
});

Discussion
You can combine tests from various modules by specifying multiple modules at once,
delimited with the ampersand; e.g., test.html?validation&tooltip would run tests that
contain validation or tooltip.

You can exclude tests using the exclamation mark; e.g., test.html?!validation would
run all tests except those from the validation module.

Instead of manually modifying the URL, you can also double-click any of the test results
to rerun just that test. QUnit will use the same filtering mechanism by appending the
name of the test to the current location.

18.8 Selecting Tests to Run | 435

Index

Symbols
$ (dollar sign)

as a variable, 271
prefix, 107
shortcut, 71
variable, 69

$ alias
using without global conflicts, 32

$ function, 270
$ shortcut

using with jQuery plugins, 270
$(), 89 (see jQuery() function)
+ (plus sign)

adjacent sibling combinator, 37
. (period)

operators, 93
.load(url) method, 401
> (greater than)

direct descendant combinator, 36
~ (tilde)

general sibling combinator, 38

A
absolute positioning

elements, 147
accessibility

web pages, 130–133
Accessible Rich Internet Applications (ARIA)

adding semantics to widgets, 130
accessing elements, 179–182
accordions

expanding, 288–293
horizontal accordions, 157–161

actions

performing on subsets of selected sets, 67–
68

testing user actions, 431
addClass, 170
adding select options, 221
adjacent sibling combinator (+), 37
Ajax

black button, 422
events, 395
and jQuery, 391–393
queuing Ajax requests, 420
shortcuts and data types, 400–402
submitting forms, 228
user feedback, 396–399
using on a whole site, 394

Ajax events
defined, 171

ajax() method, 392
ajaxForm method, 256
ajaxQueue() function, 421
ajaxSetup() method, 394
ajaxSync() function, 421
alert() window, 11
andSelf() method, 20
animate method, 152, 162, 165, 168
:animated filter, 41
:animated selector, 165
animation

determining whether elements are currently
being animated, 164

multiple hover() animations in parallel,
185

selecting elements that are currently
animating, 41

speeds, 152

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

437

stopping and resetting, 165
APIs

DOM storage API, 415, 417
organization, 7

appendTo() method, 23, 24, 27, 221
application states

saving, 414–417
arguments keyword, 163
ARIA (Accessible Rich Internet Applications)

adding semantics to widgets, 130
arrays

combining with merge(), 81
filtering out duplicate entries with unique(),

82
filtering with grep(), 80
iterating and modifying entries with map(),

81
iterating over with, 79
making unique arrays of values from existing

arrays, 64
asynchronous callbacks

unit testing, 429
attaching

objects and data to DOM with data(), 84
attr() method, 29, 213, 222
attrDelta parameter, 167
attributes

DOM elements, 29
list of, 78
selecting elements based on, 44
toggling, 99

attrStart parameter, 167
autocomplete widget, 249
autocompleting text fields, 249
autotabbing based on character count, 222

B
bare-metal loops

coding, 112
beforeSend callback, 399
bind(), 91, 173, 208, 223, 234, 325
binding

sliders, 251
black button

Ajax, 422
blur event, 228
blur() method, 216
borders

bottom borders on widget headers, 370

bottlenecks
finding, 101–105

boxModel attribute, 78
broadcast() function, 208
browser events

defined, 171
browsers

storage, 413
switching stylesheets based on browser

width, 148–150
:button filter, 46
buttons

Ajax and the black button, 422
selecting radio buttons, 216

C
caching jQuery objects, 105
callbacks

testing asynchronous callbacks, 429
testing synchronous callbacks, 429
testing with isFunction(), 82

calling
jQuery methods, 205–208
jQuery UI plugin methods, 323

captcha
form design, 238

centering
elements within viewports, 146

chaining
about, 5
defined, xviii
DOM elements, 27
traversing methods, 22

chains
debugging, 118

change event, 91
change() event, 220
character count

autotabbing based on, 222
displaying remaining, 224

characters
constraining text input to specific

characters, 226
:checkbox filter, 46
checkboxes

selecting or deselecting using a single toggle,
219

selecting or deselecting using dedicated
links, 218

438 | Index

child elements
selecting, 36

children() method, 37, 92
choosing dates, 260
class name selectors

performance, 107
classes

categories of, 342
clean() method, 118
clearForm method, 256
click handler, 77
click listeners, 302
clickable elements

states, 359
client-side storage, 411–414
client-side validation, 238
clone() method, 27
cloning

DOM elements, 27
code

from other libraries, 94
coding

bare-metal loops, 112
color

changing using themes, 370
combiner/minifiers

list of, 125
combining arrays with merge(), 81
complete option, 393
configuration

conflicts with other libraries, 69
conflicts

global, 32
with other libraries, 69

:contains filter, 42
content

growing input with its content, 259
HTML content, 30
selecting elements based on, 42
text content, 31

context
selecting DOM elements, 15
traversing DOM, 21

context parameter
selecting elements, 48

.context property, 74
converting jQuery objects to DOM objects, 59–

61
createElement() method, 24

creating
DOM elements, 23
events, 195
filter selectors, 50
jQuery UI music players, 327–339
JSON, 405
tool tips, 280–284

cross-fading rotating images, 305–310
CSS

jQuery UI CSS, 356
properties, 147
pseudoclasses, 39
resources, 388
visibility property, 44

cssFloat attribute, 78
custom iterators

writing, 96–99
cycle plugin, 72

D
data

attaching to DOM with data(), 84
dynamic data, 177
event handlers, 198–200
reusing handler functions, 173

:data filter, 51
data types

Ajax, 400–402
data() method, 84

attaching objects and data to DOM, 84
dataType, 392
datepicker plugin, 260
dates

choosing, 260
debugging

chains, 118
jQuery code, 120
script and CSS references to plugin files as

debugging aids, 319
tracing into jQuery, 121
using debuggers, 123

dedicated links
selecting or deselecting checkboxes, 218

defaults
jQuery UI plugins, 319, 321
plugins, 270

defining methods, 267
dependencies, 243
descendant elements

Index | 439

finding with wrapper set, 18
versus child elements, 36

descendant selectors
nested unordered lists, 285

deselecting checkboxes
using a single toggle, 219
using dedicated links, 218

deserialization
JSON, 405

destroying
jQuery UI plugins, 326

destructive changes
returning to prior selection, 19

dimensions, 135–150
absolute positioning elements, 147
centering elements in viewports, 146
determining whether elements are with

viewports, 143
elements, 137
offsets of elements, 139–141
relative positioning of elements, 147
scrolling elements into views, 141
switching stylesheets based on browser

width, 148–150
of windows and documents, 135

direct descendant combinator (>), 36
directory structure

theme folders, 386
disabling

effects, 168
form elements, 213–215

display:block declaration, 230
display:none declaration, 229
displaying

labels above input fields, 257
modal windows, 296–302
remaining character count, 224

div.errorMessage selector, 229
div.showErrorMessage selector, 230
document.ready() function, 280
document.ready() method, 212
document.write(), 280
documentation

jQuery, 87
jQuery API, 7

documents
dimensions, 135
tabbing through, 293–296

dollar sign ($)

as a variable, 271
prefix, 107
shortcut, 71
variable, 69

DOM
converting from XML, 404
locating sets of elements in, 4
traversing, 21
updating, 117

DOM elements
attributes, 29
cloning, 27
creating, operating on and inserting, 23
filtering a wrapper set of, 16
memory leaks, 193
removing, 24
replacing, 26
selecting, 13–16

DOM objects
converting from jQuery objects, 59–61

DOM storage API, 415, 417
DOM traversal methods, 35
drag plugin, 198
drop plugin, 198
drop-down menus

building, 303–305
duplicate array entries

filtering out with unique(), 82
duration parameter, 167
dynamic data

passing to event handlers, 177

E
each() callback, 116
each() method, 54, 79, 96, 112, 292

iterating over arrays and objects with, 79
easing functions

custom, 166
effect() method, 170
effects, 151–170

animation, 152, 164–166
custom easing methods, 166
disabling, 168
fading elements, 153–155
horizontal accordions, 157–161
jQuery UI, 168, 316
sequential effects, 162
sliding elements, 153–157, 161
template, 152

440 | Index

elapsed parameter, 167
elastic plugin, 259
ElementReady plugin, 181
elements, 35–51

(see also dimensions; DOM elements)
about, 4
absolute positioning, 147
accessing, 179–182
animation, 164–166
context parameter, 48
custom filter selectors, 50
descendant elements, 18
event handlers, 187
fading, 153–155, 161
finding dimensions of, 137
getting elements using event.target, 184
offsets, 139–141
relative positioning, 147
scrolling into views, 141
selecting based on attributes, 44
selecting based on contents, 42
selecting based on visibility, 43
selecting by index order, 39
selecting by what they don’t match, 43
selecting child elements, 36
selecting elements that are currently

animating, 41
selecting form elements by type, 46
selecting siblings, 37
selecting with specific characteristics, 47
sliding, 153–157, 161
viewports, 143, 146

enabling
form elements, 213–215

end() method, 19, 92
engine.ready() callback, 412
entering

range-constrained values, 253
:eq filter, 40
eq() method, 56, 220
equals(), 428
error callback method, 392
error messages, 243
error method, 393
errorElement, 244
errorLabelContainer, 245
errorPlacement, 245
esc() function, 117
eval() function, 103, 406

:even filter, 40
event bubbling, 185
event delegation, 180, 188
event handlers

newly added elements, 187
event object

custom, 325
event-driven programming, 171
event.special, 195, 208
event.specialAll, 196
event.target

getting elements, 184
events, 171–190, 191–210

accessing elements, 179–182
Ajax, 395
attaching handlers, 172
creating event-driven plugins, 201–204
creating events, 195
event handlers and newly added elements,

187
getting elements using event.target, 184
global event triggering, 192–195
global events and Ajax architecture, 395
handling jQuery UI plugin events, 324
letting event handlers provide data, 198–

200, 198–200
loading jQuery dynamically, 191
multiple hover() animations in parallel,

185
mutation events, 205
notification when jQuery methods called,

205–208
objects’ methods as event listeners, 208
passing dynamic data to event handlers,

177
removing sets of event handlers, 175
reusing handler functions, 173
stopping handler execution loops, 182
triggering specific event handlers, 176

executing
JavaScript code, 10

expanding
accordions, 288–293

expect(), 429
expressions, 243
extend() method, 86

extending objects, 85
extending

objects with extend(), 85

Index | 441

F
fadeIn() method, 166, 306
fadeOut() method, 166
fadeTo() method, 155, 166
fading elements, 153–155, 161
fields

autocompleting text fields, 249
creating masked input fields, 247
displaying labels above input fields, 257

:file filter, 46
file-tree expander, 285–288
files

uploading in background, 255
filter selectors

creating, 50
filter() method, 16, 19, 44, 45, 47
filtering

arrays with grep(), 80
wrapper sets of DOM elements, 16

filters
:animated filter, 41
:button filter, 46
:checkbox filter, 46
:contains filter, 42
:data filter, 51
:eq filter, 40
:even filter, 40
:file filter, 46
:has filter, 42
:hidden filter, 44, 46
:image filter, 46
list of form filters, 46
:lt filter, 40
:not filter, 43
:odd filter, 40
:password filter, 46
:radio filter, 46
:reset filter, 46
:submit filter, 46
:text filter, 46
:visible filter, 44

find() method, 16, 18, 23, 76
finding

bottlenecks, 101–105
descendant elements in wrapper sets, 18
jQuery plugins, 263

Firebug
timing problem, 103

fn object, 96

defining plugins, 267
focus() method, 216, 223
focusin plugin, 198
focusout plugin, 198
font size, 157
for..in loop, 114
form elements

enabling and disabling, 213–215
selecting by type, 46
selecting input elements, 15

form plugin, 255
formatting

jQuery chains, 92
forms (see HTML forms)
fraction parameter, 167
Framework classes

about, 343
list of, 371

Function(), 103
functions, 82

(see also callbacks)
attaching to main jQuery object, 268
private functions in jQuery plugins, 272
reusing handler functions, 173
static functions in jQuery plugins, 275

G
general sibling combinator (~), 38
get() method, 59, 401
getJSON() method, 409
getTime() method, 102
getting

DOM element attributes, 29
HTML content, 30
jQuery UI plugin options, 323
text content, 31

GitHub, 264
global conflicts

using $ alias, 32
global events

Ajax architecture, 395
triggering, 192–195

Google
minified version of jQuery, 10
themes in the jQuery UI ThemeRoller

gallery, 317
Google Code, 264
Google maps, 254
greater than (>)

442 | Index

direct descendant combinator, 36
grep() method, 80

filtering arrays, 80
grouping tests

unit testing, 433

H
handlers

attaching to events, 172
event handlers and newly added elements,

187
letting event handlers provide data, 198–

200
passing dynamic data to event handlers,

177
removing sets of event handlers, 175
reusing handler functions, 173
stopping handler execution loops, 182
triggering specific event handlers, 176

handling jQuery UI plugin events, 324
:has filter, 42
height method, 135
:hidden filter, 44, 46
hide() method, 151, 155
history plugin, 422
historyLoad() callback, 423
hoisting

selectors, 106
horizontal accordions

creating, 157–161
hover() animations

multiple in parallel, 185
href attribute, 78
hrefNormalized attribute, 78
HTML

relationship with JavaScript, 211
HTML content

getting and setting, 30
HTML forms, 211–236, 237–262

adding and removing select options, 221
autocompleting text fields, 249
autotabbing based on character count, 222
choosing dates, 260
constraining text input to specific

characters, 226
creating masked input fields, 247
disabling and enabling form elements, 213–

215
displaying labels above input fields, 257

displaying remaining character count, 224
entering range-constrained values, 253
growing input with its content, 259
limiting length of text inputs, 256
selecting form elements by type, 46
selecting or deselecting checkboxes using a

single toggle, 219
selecting or deselecting checkboxes using

dedicated links, 218
selecting radio buttons, 216
selecting ranges of values, 250–252
submitting using Ajax, 228
text input on page load, 212
uploading files in background, 255
validating, 229–236, 238–247

HTML fragments, 403
HTML pages

including jQuery library in, 9
html() method, 31, 117, 122
HTML5 Media Element API, 328
htmlSerialize attribute, 78

I
IE (Internet Explorer)

href attribute, 78
rendering vertical CSS borders bug, 305

if/else statement, 88
:image filter, 46
images

cross-fading rotating images, 305–310
including jQuery code in HTML pages, 9
index order

selecting elements by, 39
index() method, 64
indexes

getting from items in selections, 62
inheritance

by child elements in Framework classes,
371

innerHeight method, 137
innerHTML property, 31, 117
innerWidth method, 137
input

choosing dates, 260
constraining text input to specific

characters, 226
creating masked input fields, 247
displaying labels above input fields, 257
growing input with its content, 259

Index | 443

limiting length of text inputs, 256
text input on page load, 212

input:text selector, 215
inserting

DOM elements, 23
interactions

jQuery UI, 315
Interface package, 315
Internet Explore (see IE)
invalidHandler callback, 246
is() method, 42
isFunction() method, 83

testing callback functions, 82
iterating

array entries with map(), 81

J
JavaScript

and jQuery, 87
libraries, 2
packing, 125
profilers, 101
putting JavaScript at the end of a page, 423
relationship with HTML, 211
writing unobtrusive JavaScript, 126

JavaScript code
executing, 10

JavaScript Object Notation (see JSON)
JavaScript template engine

displaying JSON data, 417–420
jQuery

about, 2
API organization, 7
defined, 1
and JavaScript, 87
loading dynamically, 191
philosophy, 3

jQuery chains
formatting, 92

jQuery function, 23
selecting DOM elements, 13

jQuery objects
caching, 105
converting to DOM objects, 59–61

jQuery Plugin Repository, 264
jQuery plugins, 263–278, 315–339

$ shortcut, 270
calling jQuery UI plugin methods, 323

creating a jQuery UI music player, 327–
339

creating jQuery UI defaults, 321
destroying jQuery UI plugins, 326
finding, 263
getting and setting jQuery UI plugin

options, 323
handling jQuery UI plugin events, 324
including jQuery UI plugins, 318
initializing jQuery UI plugins, 319–321
metadata plugin, 273
passing options to, 268
private functions, 272
static functions, 275
testing plugins with QUnit, 277
writing, 265–268

jQuery UI, 279–313, 315–339, 341–389
applying themes to non-jQuery UI

components, 370–379
building drop-down menus, 303–305
calling jQuery UI plugin methods, 323
creating a jQuery UI music player, 327–

339
creating custom tool tips, 280–284
creating defaults, 321
cross-fading rotating images, 305–310
destroying jQuery UI plugins, 326
displaying modal windows, 296–302
effects, 168
expanding accordions, 288–293
getting and setting options, 323
handling jQuery UI plugin events, 324
including entire jQuery UI suite, 317
including individual jQuery UI plugins,

318
initializing jQuery UI plugins, 319–321
navigating with file-tree expander, 285–

288
overriding jQuery UI layout and theme

styles, 360–370
referencing multiple themes on a single

page, 379–388
sliding panels, 310–313
styling jQuery widgets with ThemeRoller,

345–360
tabbing through documents, 293–296

jQuery UI CSS
versions, 356

jQuery() function, 13

444 | Index

jQuery.Event, 198, 207
.js files

minify, 124
JSON (JavaScript Object Notation)

creating, 405
JavaScript template engine, 417–420
parsing, 406
using, 407–409

JSONP, 407
jStore plugin, 412
jStore.ready() callback, 412

K
keydown event, 223, 227
keyup event, 91, 223, 227

L
labels

displaying above input fields, 257
layout

overriding jQuery UI layout and theme
styles, 360–370

leadingWhitespace attribute, 78
length

limiting length of text inputs, 256
libraries

borrowing code from, 94
conflicts with, 69
JavaScript, 2
namespace conflict, 71

licensing plugins, 266
linear function, 166
links

selecting or deselecting checkboxes using
dedicated links, 218

live(), 188, 413
LiveQuery plugin, 181
loading

jQuery dynamically, 191
pages, 212
plugins, 124
tables, 109–112
web pages, 12

localization, 244, 261
lookups

name lookups, 115
looping through sets of results, 53–56
loops

bare-metal loops, 112
:lt filter, 40

M
macros, 174
map() method, 65, 81, 207

iterating and modifying array entries, 81
margins

animation methods, 151
masked input fields

creating, 247
masked input plugin, 247
maxlength plugin, 256
memory leaks

DOM elements, 193
menus

building drop-down menus, 303–305
merge() method

combining two arrays, 81
metadata plugin, 242, 258, 273
methods

base methods in jQuery UI plugins, 324
defining, 267
jQuery UI plugin methods, 323
notification when jQuery methods called,

205–208
objects’ methods as event listeners, 208
plugins, 240

minification
.js files, 124
minified code, 10
minified version of jQuery, 122
reducing JavaScript size and number of

HTTP requests, 423
modal windows

displaying, 296–302
modifying array entries with map(), 81
module() function, 433
mouseovers, 165
mousewheel plugin, 197
music players

creating a jQuery UI music player, 327–
339

mutation events, 205

N
name lookups

reducing, 115

Index | 445

namespace
jQuery and other libraries, 71
plugins, 175
triggering event handlers, 176

nested data
presenting, 285

next() method, 39
nextAll() method, 38
noCloneEvent attribute, 78
noConflict() method, 70
:not filter, 43
not() method, 43
notifications

jQuery methods, 205–208

O
objects

attaching to DOM using data(), 84
DOM objects, 59–61
extending with extend(), 85
iterating over with, 79
jQuery objects, 59–61, 105
objects’ methods as event listeners, 208

:odd filter, 40
offset method, 139, 141
offsetParent method, 139
offsets

elements, 139–141
ok(), 428
one(), 173
opacity attribute, 78
operating on DOM elements, 23
optimization

selectors, 35
option method, 324
options

metadata plugin, 274
passing to plugins, 268

outerHeight method, 137
outerWidth method, 137
overloads

jQuery events, 208

P
packing

JavaScript, 125
padding

animation methods, 151

pages
accessibility, 130–133
loading, 12
putting JavaScript at the end of a page, 423
referencing multiple themes on a single

page, 379–388
text input on page load, 212

panels
sliding panels in jQuery UI, 310–313

parsing JSON, 406
participation

in plugin development, 267
passing options to jQuery plugins, 268
:password filter, 46
performance, 87–133

animation speeds, 152
attributes, 99
bare-metal loops, 112
bottlenecks, 101–105
code from other libraries, 94
custom iterators, 96–99
debugging chains, 118
debugging jQuery code, 120
event propagation, 399
global event triggering, 192–195
jQuery chains, 92
jQuery objects, 105
making your pages accessible, 130–133
name lookups, 115
progressive enhancement, 128
redundant repetition, 91
selectors, 107
server requests, 123
tables, 109–112
tracing into jQuery, 121
updating DOM, 117
writing unobtrusive JavaScript, 126

period (.)
operators, 93

persisting data
web browsers, 411

philosophy of jQuery, 3
players

creating a jQuery UI music player, 327–
339

plugins, 237–262, 263–278, 315–339
(see also jQuery plugins)
$ shortcut, 270
adding functionality with, 72–74

446 | Index

autocompleting text fields, 249
calling jQuery UI plugin methods, 323
choosing dates, 260
creating a jQuery UI music player, 327–

339
creating event-driven plugins, 201–204
creating masked input fields, 247
destroying jQuery UI plugins, 326
displaying labels above input fields, 257
entering range-constrained values, 253
event.special, 197
finding jQuery plugins, 263
getting and setting jQuery UI plugin

options, 323
growing input with its content, 259
handling jQuery UI plugin events, 324
including individual jQuery UI plugins,

318
initializing jQuery UI plugins, 319–321
jQuery UI defaults, 321
limiting length of text inputs, 256
loading, 124
metadata plugin, 273
namespaces, 175
passing options to, 268
polling with, 181
private functions, 272
selecting ranges of values, 250–252
static functions, 275
stopImmediatePropagation(), 183
testing plugins with QUnit, 277
uploading files in background, 255
validating forms, 238–247
writing jQuery plugins, 265–268

plus sign (+)
adjacent sibling combinator, 37

polling, 181
position method, 139
positioning

absolute positioning, 147
relative positioning, 147

post() method, 401
preventDefault() method, 200
private functions

jQuery functions, 272
profilers

finding bottlenecks, 101
progressive enhancement

using jQuery for, 128

pseudoclasses, 39
(see also filters)

Pure templating engine, 417

Q
queries

determining exact queries used, 74
queuing Ajax requests, 420
QuirksMode, 151
QUnit

about, 426
testing jQuery plugins, 277

R
radio buttons

about, 249
selecting, 216

:radio filter, 46
radioClass() method, 94
ready() function, 191
ready() method, 11
rebinding, 188
relative positioning

elements, 147
remove() method, 25, 222
removeAttr() method, 30, 213
removeClass, 170
removing

DOM element attributes, 29
DOM elements, 24
redundant repetition, 91
select options, 221
whitespace from strings or form values using

trim(), 83
replaceAll() method, 27
replaceWith() method, 26
replacing DOM elements, 26
requests

queuing Ajax requests, 420
:reset filter, 46
resetting animations, 165
resizable plugin, 259
reverseEach() method, 98
rotating images

cross-fading, 305–310

S
same(), 428

Index | 447

saving application states, 414–417
<script> tags, 125
scriptEval attribute, 78
scripts

compared to library widgets, 342
scrolling

elements into views, 141
scrollLeft method, 143
scrollTo plugin, 146
scrollTop method, 141
security

Ajax, 407
<select> element, 233
selecting

checkboxes using a single toggle, 219
checkboxes using dedicated links, 218
radio buttons, 216
ranges of values, 250–252

selecting elements, 35–51
based on attributes, 44
based on contents, 42
based on visibility, 43
by what they don’t match, 43
child elements, 36
context parameter, 48
custom filter selectors, 50
DOM elements, 13–16
form elements by type, 46
by index order, 39
siblings, 37
that are currently animating, 41
with specific characteristics, 47

selections
including previous in current, 20
returning to before a destructive change,

19
.selector property, 74
selector.focus() method, 212
selectors

about, 14
constructing, 35
descendant selectors, 285
hoisting, 106
reducing sets to a specified item, 56–59
writing, 107

selects, 249
serialization

JSON, 405
server requests

reducing, 123
sessions

saving application states, 414–417
setData event, 85
setInterval, 226
sets

looping through, 53–56
performing actions on subsets of selected

sets, 67–68
reducing to a specified item, 56–59

setTimeout() function, 88, 97, 98, 120
setting

DOM element attributes, 29
HTML content, 30
jQuery UI plugin options, 323
text content, 31

setVisibility() function, 92
shortcuts

Ajax, 400–402
browser and Ajax events, 171
for making Ajax requests, 400

show() method, 122, 155
siblings

selecting, 37
siblings() method, 38, 93, 217
sleep() function, 98
slice() method, 67
slide callback, 251
slideDown() method, 292
slider widget, 250
slider() function, 332
sliders

binding, 251
slideToggle, 157
slideUp() method, 151, 156, 292
sliding

elements, 153–157, 161
panels in jQuery UI, 310–313

slowEach() method, 97
SourceForge, 265
spinner plugin, 253
split() method, 88
start event, 325
start(), 430
states

clickable elements, 359
saving application states, 414–417

static functions
jQuery plugins, 275

448 | Index

stop(), 165, 186, 430
stopImmediatePropagation() method, 182
stopping

animations, 165
handler execution loops, 182

storage
browsers, 413
client-side, 411–414

strings
removing whitespace from using trim(), 83

style attribute, 78
stylesheets

switching, 148–150
styling

overriding jQuery UI layout and theme
styles, 360–370

styling jQuery widgets with ThemeRoller,
345–360

:submit filter, 46
submitHandler, 246
submitting

forms using Ajax, 228
subsets

performing actions on, 67–68
success callback method, 392
support

for plugins, 266
support object, 78
swing function, 166
switch(){} statement, 233
switching

stylesheets, 148–150
synchronous callbacks

unit testing, 429

T
tabbing

through documents, 293–296
<table> element, 111
tables

loading, 109–112
tbody attribute, 78
template

effects, 152
testing, 425

(see also unit testing)
callback functions with isFunction(), 82
jQuery plugins with QUnit, 277
selector speed test pages, 108

using debuggers, 123
text

constraining text input to specific
characters, 226

limiting length of text inputs, 256
text input on page load, 212

text content
getting and setting, 31

text fields
autocompleting, 249

:text filter, 46
text() method, 31, 222
textarea

size of, 256, 259
<textarea> element, 224
ThemeRoller

about, 343
referencing multiple themes on a single

page, 379
styling jQuery widgets, 345–360

theming, 341–389
applying themes to non-jQuery UI

components, 370–379
overriding jQuery UI layout and theme

styles, 360–370
referencing multiple themes on a single

page, 379–388
styling jQuery widgets with ThemeRoller,

345–360
ThickBox, 297
this(), 88
tilde (~)

general sibling combinator, 38
time() function, 102, 114
toggleAttr() method, 99
toggleCheck() method, 99
.toggleCheck() plugin, 99
toggleClass, 170
toggling

attributes, 99
tool tips

creating, 280–284
<tr> element, 111
tracing

into jQuery, 121
traversing DOM, 21
trigger() method, 92, 177, 192, 207, 431
triggerHandler(), 199, 431
triggerHandler() method, 207

Index | 449

triggering
global events, 192–195

trim() method, 84
removing whitespace from strings or form

values, 83
Twitter

character limit, 256
type

selecting form elements by, 46
type parameter, 401
typeof operator, 83

U
UI (see jQuery UI)
ui argument, 325
unbind(), 173, 234
unique() function, 82

filtering out duplicate array entries, 82
unit testing, 425–435

asserting results, 427
asynchronous callbacks, 429
atomic, 432
automatic unit testing, 425–427
grouping tests, 433
selecting test to run, 434
synchronous callbacks, 429
user actions, 431

updating
DOM, 117

uploading
files in background, 255

URL, 392
user actions

unit testing, 431
user events

defined, 171
user feedback

Ajax, 396–399
user interface (see jQuery UI)
utilities, 77–86

data(), 84
each(), 79
extend(), 85
grep(), 80
isFunction(), 82
map(), 81
merge(), 81
support(), 77
trim(), 83

unique(), 82

V
validating forms, 229–236, 238–247
valueOf() method, 102
values

entering range-constrained values, 253
removing whitespace from using trim(), 83
selecting ranges of, 250–252

viewports
elements, 143, 146
height and width in browser, 297

views
scrolling elements into, 141

visibility
selecting elements based on, 43
visibility property, 44

:visible filter, 44

W
watermark plugin, 258
web pages (see pages)
whitespace

removing from strings or form values, 83
Widget-specific classes, 342
widgets

ARIA, 130
bottom borders on widget headers, 370
jQuery UI, 316
library widgets compared to setting up

scripts, 342
styling jQuery widgets with ThemeRoller,

345–360
width method, 135
window.onload event, 10
windows

dimensions, 135
displaying modal windows, 296–302

wrapper sets
about, 6
DOM elements, 16
finding descendant elements, 18

writing
custom iterators, 96–99
jQuery plugins, 265–268
selectors, 107

450 | Index

X
XML

converting to DOM, 404

Index | 451

Colophon
The animal on the cover of the jQuery Cookbook is an ermine (Mustela erminea), also
known as a stoat. “Ermine” sometimes refers to the animal’s white winter fur, and
“stoat” to the brown fur it has during the rest of the year. It belongs to the weasel family,
which includes martens, ferrets, minks, otters, and polecats, though it is distinguished
from these other members by its black-tipped tail.

The ermine lives in northern woodland regions of Europe, Asia, and North America.
It is mainly nocturnal and makes dens in tree roots, under stones, and in tunnels. A
solitary animal, the ermine can travel up to 10 miles in one night searching for food.
Its predators include foxes, badgers, cats, and birds of prey.

The ermine’s slender body helps it run swiftly, even across snow, as well as climb and
swim. Although this shape has advantages, it also causes the ermine to quickly lose
heat from its body. Thick fur and a fast metabolism help compensate, and the ermine
must eat daily to meet its energy demands. Its diet includes small mammals, birds, fish,
and insects. When the ermine spots its prey, it sneaks up on it in a series of leaps, grasps
the victim’s neck, and kills it with repeated bites.

White ermine fur is highly prized and is used in trimming coats, although demand has
dropped in recent years. Typically, several furs are sewn together to form a pattern of
black dots on a white field. This pattern was imitated in heraldry—the design of coats
of arms—as early as the 12th century, most famously in the arms of Brittany. Ermine
fur is also a symbol of royalty or purity, which is perhaps why Elizabeth I of England,
“the Virgin Queen,” was painted with an ermine by her side.

The cover image is from Riverside Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Contributors
	Chapter Authors
	Tech Editors

	Preface
	Who This Book Is For
	What You’ll Learn
	jQuery Style and Conventions
	Other Options
	If You Have Problems Making Examples Work
	If You Like (or Don’t Like) This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. jQuery Basics
	1.0 Introduction
	Why jQuery?
	The jQuery Philosophy
	Find some elements and do something with them
	Chaining
	The jQuery wrapper set

	How the jQuery API Is Organized

	1.1 Including the jQuery Library Code in an HTML Page
	Problem
	Solution
	Discussion

	1.2 Executing jQuery/JavaScript Coded After the DOM Has Loaded but Before Complete Page Load
	Problem
	Solution
	Discussion

	1.3 Selecting DOM Elements Using Selectors and the jQuery Function
	Problem
	Solution
	Discussion

	1.4 Selecting DOM Elements Within a Specified Context
	Problem
	Solution
	Discussion

	1.5 Filtering a Wrapper Set of DOM Elements
	Problem
	Solution
	Discussion

	1.6 Finding Descendant Elements Within the Currently Selected Wrapper Set
	Problem
	Solution
	Discussion

	1.7 Returning to the Prior Selection Before a Destructive Change
	Problem
	Solution
	Discussion

	1.8 Including the Previous Selection with the Current Selection
	Problem
	Solution
	Discussion

	1.9 Traversing the DOM Based on Your Current Context to Acquire a New Set of DOM Elements
	Problem
	Solution
	Discussion

	1.10 Creating, Operating on, and Inserting DOM Elements
	Problem
	Solution
	Discussion

	1.11 Removing DOM Elements
	Problem
	Solution
	Discussion

	1.12 Replacing DOM Elements
	Problem
	Solution
	Discussion

	1.13 Cloning DOM Elements
	Problem
	Solution
	Discussion

	1.14 Getting, Setting, and Removing DOM Element Attributes
	Problem
	Solution
	Discussion

	1.15 Getting and Setting HTML Content
	Problem
	Solution
	Discussion

	1.16 Getting and Setting Text Content
	Problem
	Solution
	Discussion

	1.17 Using the $ Alias Without Creating Global Conflicts
	Problem
	Solution
	Discussion

	Chapter 2. Selecting Elements with jQuery
	2.0 Introduction
	2.1 Selecting Child Elements Only
	Problem
	Solution
	Discussion

	2.2 Selecting Specific Siblings
	Problem
	Solution
	Discussion

	2.3 Selecting Elements by Index Order
	Problem
	Solution
	Discussion

	2.4 Selecting Elements That Are Currently Animating
	Problem
	Solution
	Discussion

	2.5 Selecting Elements Based on What They Contain
	Problem
	Solution
	Discussion

	2.6 Selecting Elements by What They Don’t Match
	Problem
	Solution
	Discussion

	2.7 Selecting Elements Based on Their Visibility
	Problem
	Solution
	Discussion

	2.8 Selecting Elements Based on Attributes
	Problem
	Solution
	Discussion

	2.9 Selecting Form Elements by Type
	Problem
	Solution
	Discussion

	2.10 Selecting an Element with Specific Characteristics
	Problem
	Solution
	Discussion

	2.11 Using the Context Parameter
	Problem
	Solution
	Discussion

	2.12 Creating a Custom Filter Selector
	Problem
	Solution
	Discussion

	Chapter 3. Beyond the Basics
	3.0 Introduction
	3.1 Looping Through a Set of Selected Results
	Problem
	Solution
	Discussion

	3.2 Reducing the Selection Set to a Specified Item
	Problem
	Solution
	Discussion

	3.3 Convert a Selected jQuery Object into a Raw DOM Object
	Problem
	Solution
	Discussion

	3.4 Getting the Index of an Item in a Selection
	Problem
	Solution
	Discussion

	3.5 Making a Unique Array of Values from an Existing Array
	Problem
	Solution
	Discussion

	3.6 Performing an Action on a Subset of the Selected Set
	Problem
	Solution
	Discussion

	3.7 Configuring jQuery Not to Conflict with Other Libraries
	Problem
	Solution
	Discussion

	3.8 Adding Functionality with Plugins
	Problem
	Solution
	Discussion

	3.9 Determining the Exact Query That Was Used
	Problem
	Solution
	Discussion

	Chapter 4. jQuery Utilities
	4.0 Introduction
	4.1 Detecting Features with jQuery.support
	Problem
	Solution
	Discussion

	4.2 Iterating Over Arrays and Objects with jQuery.each
	Problem
	Solution
	Discussion

	4.3 Filtering Arrays with jQuery.grep
	Problem
	Solution
	Discussion

	4.4 Iterating and Modifying Array Entries with jQuery.map
	Problem
	Solution
	Discussion

	4.5 Combining Two Arrays with jQuery.merge
	Problem
	Solution
	Discussion

	4.6 Filtering Out Duplicate Array Entries with jQuery.unique
	Problem
	Solution
	Discussion

	4.7 Testing Callback Functions with jQuery.isFunction
	Problem
	Solution
	Discussion

	4.8 Removing Whitespace from Strings or Form Values with jQuery.trim
	Problem
	Solution
	Discussion

	4.9 Attaching Objects and Data to DOM with jQuery.data
	Problem
	Solution
	Discussion

	4.10 Extending Objects with jQuery.extend
	Problem
	Solution
	Discussion

	Chapter 5. Faster, Simpler, More Fun
	5.0 Introduction
	5.1 That’s Not jQuery, It’s JavaScript!
	Problem
	Solution
	Discussion

	5.2 What’s Wrong with $(this)?
	Problem
	Solution
	Discussion

	5.3 Removing Redundant Repetition
	Problem
	Solution 1
	Solution 2
	Discussion

	5.4 Formatting Your jQuery Chains
	Problem
	Solution
	Discussion

	5.5 Borrowing Code from Other Libraries
	Problem
	Solution
	Discussion

	5.6 Writing a Custom Iterator
	Problem
	Solution
	Discussion

	5.7 Toggling an Attribute
	Problem
	Solution
	Discussion

	5.8 Finding the Bottlenecks
	Problem
	Solution
	Discussion

	5.9 Caching Your jQuery Objects
	Problem
	Solution
	Discussion

	5.10 Writing Faster Selectors
	Problem
	Solution
	Discussion

	5.11 Loading Tables Faster
	Problem
	Solution
	Discussion

	5.12 Coding Bare-Metal Loops
	Problem
	Solution
	Discussion

	5.13 Reducing Name Lookups
	Problem
	Solution
	Discussion

	5.14 Updating the DOM Faster with .innerHTML
	Problem
	Solution
	Discussion

	5.15 Debugging? Break Those Chains
	Problem
	Solution
	Discussion

	5.16 Is It a jQuery Bug?
	Problem
	Solution
	Discussion

	5.17 Tracing into jQuery
	Problem 1
	Solution 1
	Problem 2
	Solution 2
	Discussion

	5.18 Making Fewer Server Requests
	Problem
	Solution
	Discussion

	5.19 Writing Unobtrusive JavaScript
	Problem
	Solution
	Discussion

	5.20 Using jQuery for Progressive Enhancement
	Problem
	Solution
	Discussion

	5.21 Making Your Pages Accessible
	Problem
	Solution
	Discussion

	Chapter 6. Dimensions
	6.0 Introduction
	6.1 Finding the Dimensions of the Window and Document
	Problem
	Solution
	Discussion

	6.2 Finding the Dimensions of an Element
	Problem
	Solution
	Discussion

	6.3 Finding the Offset of an Element
	Problem
	Solution
	Discussion

	6.4 Scrolling an Element into View
	Problem
	Solution: Scrolling the Whole Window
	Solution: Scrolling Inside an Element

	6.5 Determining Whether an Element Is Within the Viewport
	Problem
	Solution

	6.6 Centering an Element Within the Viewport
	Problem
	Solution

	6.7 Absolutely Positioning an Element at Its Current Position
	Problem
	Solution

	6.8 Positioning an Element Relative to Another Element
	Problem
	Solution

	6.9 Switching Stylesheets Based on Browser Width
	Problem
	Solutions
	Solution 1: Changing the Class on the Body Element
	Solution 2: Changing the href Attribute of the Stylesheet That’s Responsible for Size-Related Styling
	Solution 3: Include All Size-Related Stylesheets in the Page, but Enable Only One at a Time
	Discussion

	Chapter 7. Effects
	7.0 Introduction
	Animate Method
	Animation Speeds
	Effects Template

	7.1 Sliding and Fading Elements in and out of View
	Problem
	Solution
	Slide
	Fade
	Both

	Discussion

	7.2 Making Elements Visible by Sliding Them Up
	Problem
	Solution
	HTML
	CSS
	jQuery

	Discussion

	7.3 Creating a Horizontal Accordion
	Problem
	Solution
	HTML
	CSS
	jQuery

	Discussion

	7.4 Simultaneously Sliding and Fading Elements
	Solution
	Discussion

	7.5 Applying Sequential Effects
	Problem
	Solution
	Manual callback
	Automatic sequence

	Discussion

	7.6 Determining Whether Elements Are Currently Being Animated
	Problem
	Solution
	Discussion

	7.7 Stopping and Resetting Animations
	Problem
	Solution
	Discussion

	7.8 Using Custom Easing Methods for Effects
	Problem
	Solution
	Discussion

	7.9 Disabling All Effects
	Problem
	Solution
	Discussion

	7.10 Using jQuery UI for Advanced Effects
	Problem
	Solution
	CSS
	jQuery

	Discussion

	Chapter 8. Events
	8.0 Introduction
	8.1 Attaching a Handler to Many Events
	Problem
	Solution
	Discussion

	8.2 Reusing a Handler Function with Different Data
	Problem
	Solution
	Discussion

	8.3 Removing a Whole Set of Event Handlers
	Problem
	Solution
	Discussion
	How to bind with a namespace?
	How to clean up my plugin?

	8.4 Triggering Specific Event Handlers
	Problem
	Solution
	Discussion
	How to trigger handlers with a certain namespace?
	How to trigger handlers that do not have a namespace?

	8.5 Passing Dynamic Data to Event Handlers
	Problem
	Solution
	Discussion
	Passing extra arguments
	Passing a custom event object
	Some more examples

	What’s the difference with event.data?

	8.6 Accessing an Element ASAP (Before document.ready)
	Problem
	Solution
	Discussion
	Hide an element right away (or another style operation)
	Bind event handlers to an element ASAP
	Any other situation
	Polling
	Customly positioned scripts

	8.7 Stopping the Handler Execution Loop
	Problem
	Solution
	Discussion
	Examples
	Simple form validation

	Disadvantages of this approach
	Killing all events

	8.8 Getting the Correct Element When Using event.target
	Problem
	Solution
	Discussion

	8.9 Avoid Multiple hover() Animations in Parallel
	Problem
	Solution
	Discussion
	Example
	Not there yet

	8.10 Making Event Handlers Work for Newly Added Elements
	Problem
	Solution
	Discussion
	Why do event handlers get lost ?
	A little introduction to event delegation
	Pros and cons of each approach
	Rebinding
	Event delegation

	Conclusion

	Chapter 9. Advanced Events
	9.0 Introduction
	9.1 Getting jQuery to Work When Loaded Dynamically
	Problem
	Solution
	Discussion
	What is jQuery.ready()?
	Why was this happening?

	9.2 Speeding Up Global Event Triggering
	Problem
	Solution
	Discussion
	Pros and cons
	Making the listeners functional

	9.3 Creating Your Own Events
	Problem
	Solution
	Discussion
	Handling every binding to your event
	A real-world example
	Existing uses for this feature

	9.4 Letting Event Handlers Provide Needed Data
	Problem
	Solution
	Discussion
	How can we do this with jQuery 1.3+?
	How this was achieved before jQuery 1.3
	Allowing event handlers to prevent actions

	9.5 Creating Event-Driven Plugins
	Problem
	Solution
	Discussion
	An example
	What happens if an element already has one of these events?
	How can I allow others to clean up the added event handlers?
	What’s the difference with other approaches?
	Allowing the plugin to accept commands
	Returning an object with methods

	9.6 Getting Notified When jQuery Methods Are Called
	Problem
	Solution
	Discussion
	Overloading the desired method
	Triggering an event prior to the execution
	Executing the original method
	Triggering an event after the execution
	Returning the result
	Putting it all together
	Where to go from here?

	9.7 Using Objects’ Methods as Event Listeners
	Problem
	Solution
	Discussion
	Where did the node go?
	The example
	The objects
	Binding the methods

	Chapter 10. HTML Form Enhancements from
 Scratch
	10.0 Introduction
	10.1 Focusing a Text Input on Page Load
	Problem
	Solution
	Discussion

	10.2 Disabling and Enabling Form Elements
	Problem
	Solution 1
	Solution 2
	Discussion

	10.3 Selecting Radio Buttons Automatically
	Problem
	Solution 1
	Solution 2
	Discussion

	10.4 (De)selecting All Checkboxes Using Dedicated Links
	Problem
	Solution
	Discussion

	10.5 (De)selecting All Checkboxes Using a Single Toggle
	Problem
	Solution
	Discussion

	10.6 Adding and Removing Select Options
	Problem
	Solution
	Discussion

	10.7 Autotabbing Based on Character Count
	Problem
	Solution
	Discussion

	10.8 Displaying Remaining Character Count
	Problem
	Solution
	Discussion

	10.9 Constraining Text Input to Specific Characters
	Problem
	Solution
	Discussion

	10.10 Submitting a Form Using Ajax
	Problem
	Solution
	Discussion

	10.11 Validating Forms
	Problem
	Solution
	Discussion

	Chapter 11. HTML Form Enhancements with
 Plugins
	11.0 Introduction
	Basic Approach

	11.1 Validating Forms
	Problem
	Solution
	Discussion
	Methods
	Custom methods

	Rules
	Error messages
	Dependencies
	Custom expressions
	Localization
	Error element
	Layout

	Handling the submit
	Limitations

	11.2 Creating Masked Input Fields
	Problem
	Solution
	Discussion
	Limitations

	11.3 Autocompleting Text Fields
	Problem
	Solution
	Discussion

	11.4 Selecting a Range of Values
	Problem
	Solution
	Discussion

	11.5 Entering a Range-Constrained Value
	Problem
	Solution
	Discussion
	Google Maps integration

	11.6 Uploading Files in the Background
	Problem
	Solution
	Discussion

	11.7 Limiting the Length of Text Inputs
	Problem
	Solution
	Discussion

	11.8 Displaying Labels Above Input Fields
	Problem
	Solution
	Discussion

	11.9 Growing an Input with Its Content
	Problem
	Solution
	Discussion

	11.10 Choosing a Date
	Problem
	Solution
	Discussion
	Localization

	Chapter 12. jQuery Plugins
	12.0 Introduction
	12.1 Where Do You Find jQuery Plugins?
	Problem
	Solution
	Discussion
	Search through the jQuery Plugin Repository
	Search through Google Code
	Search through GitHub
	Perform a Google search
	Search through SourceForge

	12.2 When Should You Write a jQuery Plugin?
	Problem
	Solution
	Discussion
	Build a plugin if there is a potential audience
	Know and communicate the level of support you are willing to provide
	Plan for participation from others

	12.3 Writing Your First jQuery Plugin
	Problem
	Solution
	Writing a custom jQuery method
	Writing a custom jQuery function

	Discussion

	12.4 Passing Options into Your Plugin
	Problem
	Solution
	Discussion

	12.5 Using the $ Shortcut in Your Plugin
	Problem
	Solution
	Discussion

	12.6 Including Private Functions in Your Plugin
	Problem
	Solution
	Discussion

	12.7 Supporting the Metadata Plugin
	Problem
	Solution
	Discussion

	12.8 Adding a Static Function to Your Plugin
	Problem
	Solution
	Discussion

	12.9 Unit Testing Your Plugin with QUnit
	Problem
	Solution
	Discussion

	Chapter 13. Interface Components from Scratch
	13.0 Introduction
	13.1 Creating Custom Tool Tips
	Problem
	Solution
	Tool tip—HTML code
	Tool tip—jQuery code

	Discussion

	13.2 Navigating with a File-Tree Expander
	Problem
	Solution
	File tree—HTML code
	File tree—jQuery code

	Discussion

	13.3 Expanding an Accordion
	Problem
	Solution
	Accordion—HTML code
	Accordion—jQuery code

	Discussion

	13.4 Tabbing Through a Document
	Problem
	Solution
	Tabs—HTML code
	Tabs—jQuery code

	Discussion

	13.5 Displaying a Simple Modal Window
	Problem
	Solution
	Modal—HTML code
	Modal—jQuery code

	Discussion

	13.6 Building Drop-Down Menus
	Problem
	Solution
	Drop-down—HTML code
	Drop-down—jQuery code

	Discussion

	13.7 Cross-Fading Rotating Images
	Problem
	Solution
	Rotator—HTML code
	Rotator—jQuery code

	Discussion

	13.8 Sliding Panels
	Problem
	Solution
	Panels—HTML code
	Panels—jQuery code

	Discussion

	Chapter 14. User Interfaces with jQuery UI
	14.0 Introduction
	Interactions
	Widgets
	Effects
	Basic Usage
	How This Chapter Is Organized

	14.1 Including the Entire jQuery UI Suite
	Problem
	Solution
	Discussion

	14.2 Including an Individual jQuery UI Plugin or Two
	Problem
	Solution
	Discussion

	14.3 Initializing a jQuery UI Plugin with Default Options
	Problem
	Solution
	Discussion

	14.4 Initializing a jQuery UI Plugin with Custom Options
	Problem
	Solution
	Discussion

	14.5 Creating Your Very Own jQuery UI Plugin Defaults
	Problem
	Solution
	Discussion

	14.6 Getting and Setting jQuery UI Plugin Options
	Problem
	Solution 1: Getting the Value
	Solution 2: Setting the Value
	Discussion

	14.7 Calling jQuery UI Plugin Methods
	Problem
	Solution
	Discussion

	14.8 Handling jQuery UI Plugin Events
	Problem
	Solution 1: Pass a Callback Function to the Event Name Option
	Solution 2: Bind to the Custom Event Using the Event Type
	Discussion

	14.9 Destroying a jQuery UI Plugin
	Problem
	Solution
	Discussion

	14.10 Creating a jQuery UI Music Player
	Problem
	Solution
	HTML5 audio
	The music player
	Play and pause button
	Current and total time labels
	Slider track for song position
	Progress bar in track to show buffering
	Volume slider
	Widget background and top styling

	Chapter 15. jQuery UI Theming
	15.0 Introduction
	Understanding the Components of jQuery UI CSS

	15.1 Styling jQuery UI Widgets with ThemeRoller
	Problem
	Solution
	Step 1. Open ThemeRoller
	Step 2. Create and preview a theme
	Step 3. Download the jQuery UI widgets and theme
	Step 4. Merge files into your project directory
	Step 5. Reference the theme stylesheet in your project

	Discussion

	15.2 Overriding jQuery UI Layout and Theme Styles
	Problem
	Solution
	Step 1. Review the widget markup and styles for jQuery UI plugins
	Step 2. Create an override stylesheet
	Step 3. Edit the style rules in your override stylesheet
	Scope overrides
	Write override rules

	Discussion

	15.3 Applying a Theme to Non-jQuery UI Components
	Problem
	Solution
	Step 1: Review available Framework classes to identify those you can apply to your components
	Step 2: Apply clickable-state Framework classes

	Discussion

	15.4 Referencing Multiple Themes on a Single Page
	Problem
	Solution
	Step 1. Create another theme using ThemeRoller
	Step 2. Scope the new theme and download it
	Step 3. Merge files into your project directory
	Step 4. Reference the scoped theme stylesheet in your project

	15.5 Appendix: Additional CSS Resources

	Chapter 16. jQuery, Ajax, Data Formats: HTML, XML,
 JSON, JSONP
	16.0 Introduction
	16.1 jQuery and Ajax
	Problem
	Solution
	Discussion

	16.2 Using Ajax on Your Whole Site
	Problem
	Solution
	Discussion

	16.3 Using Simple Ajax with User Feedback
	Problem
	Solution
	Discussion

	16.4 Using Ajax Shortcuts and Data Types
	Problem
	Solution
	Discussion

	16.5 Using HTML Fragments and jQuery
	Problem
	Solution
	Discussion

	16.6 Converting XML to DOM
	Problem
	Solution
	Discussion

	16.7 Creating JSON
	Problem
	Solution
	Discussion

	16.8 Parsing JSON
	Problem
	Solution
	Discussion

	16.9 Using jQuery and JSONP
	Problem
	Solution
	Discussion

	Chapter 17. Using jQuery in Large Projects
	17.0 Introduction
	17.1 Using Client-Side Storage
	Problem
	Solution
	Discussion

	17.2 Saving Application State for a Single Session
	Problem
	Solution
	Discussion

	17.3 Saving Application State Between Sessions
	Problem
	Solution
	Discussion

	17.4 Using a JavaScript Template Engine
	Problem
	Solution
	Discussion

	17.5 Queuing Ajax Requests
	Problem
	Solution
	Discussion

	17.6 Dealing with Ajax and the Back Button
	Problem
	Solution
	Discussion

	17.7 Putting JavaScript at the End of a Page
	Problem
	Solution
	Discussion

	Chapter 18. Unit Testing
	18.0 Introduction
	18.1 Automating Unit Testing
	Problem
	Solution
	Discussion

	18.2 Asserting Results
	Problem
	Solution
	ok(boolean[, message])
	equals(actual, expected[, message])
	same(actual, expected[, message])

	18.3 Testing Synchronous Callbacks
	Problem
	Solution
	Discussion

	18.4 Testing Asynchronous Callbacks
	Problem
	Solution
	Discussion

	18.5 Testing User Actions
	Problem
	Solution
	Discussion

	18.6 Keeping Tests Atomic
	Problem
	Solution
	Discussion

	18.7 Grouping Tests
	Problem
	Solution
	Discussion

	18.8 Selecting Tests to Run
	Problem
	Solution
	Discussion

	Index

